• Previous Article
    An integral inequality for the invariant measure of some finite dimensional stochastic differential equation
  • DCDS-B Home
  • This Issue
  • Next Article
    Well-posedness of stochastic primitive equations with multiplicative noise in three dimensions
November  2016, 21(9): 3029-3052. doi: 10.3934/dcdsb.2016086

Mean field limit with proliferation

1. 

Universita di Pisa, Dipartimento Matematica, Largo Bruno Pontecorvo 5, C.A.P. 56127, Pisa, Italy

2. 

Technische Universität Berlin, Institut für Mathematik, Straße des 17. Juni 136, D-10623, Berlin, Germany

Received  October 2015 Revised  March 2016 Published  October 2016

An interacting particle system with long range interaction is considered. Particles, in addition to the interaction, proliferate with a rate depending on the empirical measure. We prove convergence of the empirical measure to the solution of a parabolic equation with non-local nonlinear transport term and proliferation term of logistic type.
Citation: Franco Flandoli, Matti Leimbach. Mean field limit with proliferation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3029-3052. doi: 10.3934/dcdsb.2016086
References:
[1]

R. E. Baker and M. J. Simpson, Correcting mean-field approximations for birth-death-movement processes,, Phys. Rev. E, 82 (2010). doi: 10.1103/PhysRevE.82.041905.

[2]

L. Banas, Z. Brzezniak, M. Neklyudov and A. Prohl, Stochastic Ferromagnetism: Analysis and Numerics,, De Gruyter Studies in Mathematics, (2014).

[3]

M. Bodnar and J. J. L. Velazquez, Derivation of macroscopic equations for individual cell-based models: A formal approach,, Math. Meth. Appl. Sci., 28 (2005), 1757. doi: 10.1002/mma.638.

[4]

Z. Brzezniak, M. Ondrejat and E. Motyl, Invariant measure for the stochastic Navier-Stokes equations in unbounded 2D domains, preprint,, , ().

[5]

Z. Brzezniak and E. Motyl, Existence of a martingale solution of the stochastic Navier-Stokes equations in unbounded 2D and 3D-domains,, J. Diff. Eq., 254 (2013), 1627. doi: 10.1016/j.jde.2012.10.009.

[6]

F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, preprint,, Probab. Theory Relat. Fields, 102 (1995), 367. doi: 10.1007/BF01192467.

[7]

J. L. Lions, Quelques Methodes de Resolution des Problemes aux Limites non Lineaires,, Dunod, (1969).

[8]

S. Meleard and V. Bansaye, Some Stochastic Models for Structured Populations: Scaling Limits and Long Time Behavior,, Stochastics in Biological Systems, (2015). doi: 10.1007/978-3-319-21711-6.

[9]

M. Metivier, Quelques problèmes liés aux systèmes infinis de particules et leurs limites,, Séminaire de Probabilités, 20 (1986), 426. doi: 10.1007/BFb0075734.

[10]

G. Nappo and E. Orlandi, Limit laws for a coagulation model of interacting random particles,, Annales de l'I.H.P. section B, 24 (1988), 319.

[11]

K. Oelschläger, A law of large numbers for moderately interacting diffusion processes,, Zeitschrift fur Wahrsch. Verwandte Gebiete, 69 (1985), 279. doi: 10.1007/BF02450284.

[12]

K. Oelschläger, On the Derivation of Reaction-Diffusion Equations as Limit Dynamics of Systems of Moderately Interacting Stochastic Processes,, Probab. Th. Rel. Fields, 82 (1989), 565. doi: 10.1007/BF00341284.

[13]

R. Philipowski, Interacting diffusions approximating the porous medium equation and propagation of chaos,, Stoch. Proc. Appl., 117 (2007), 526. doi: 10.1016/j.spa.2006.09.003.

[14]

A. Stevens, The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems,, SIAM J. Appl. Math., 61 (2000), 183. doi: 10.1137/S0036139998342065.

[15]

S. He, J. Wang and J. A. Yan, Semimartingale Theory and Stochastic Calculus,, Beijing: Science Press, (1992).

[16]

P. Hinow, P. Gerlee, L. J. McCawley, V. Quaranta, M. Ciobanu, S. Wang, J. M. Graham, B. P. Ayati, J. Claridge, K. R. Swanson, M. Loveless and A. R. A. Anderson, A spatial model of tumor-host interaction: Application of chemoterapy,, Math. Biosc. Engin., 6 (2009), 521.

[17]

K. Uchiyama, Pressure in classical Statistical Mechanics and interacting Brownian particles in multi-dimensions,, Ann. H. Poincaré, 1 (2000), 1159. doi: 10.1007/PL00001025.

[18]

S. R. S. Varadhan, Scaling limit for interacting diffusions,, Comm. Math. Phys., 135 (1991), 313. doi: 10.1007/BF02098046.

show all references

References:
[1]

R. E. Baker and M. J. Simpson, Correcting mean-field approximations for birth-death-movement processes,, Phys. Rev. E, 82 (2010). doi: 10.1103/PhysRevE.82.041905.

[2]

L. Banas, Z. Brzezniak, M. Neklyudov and A. Prohl, Stochastic Ferromagnetism: Analysis and Numerics,, De Gruyter Studies in Mathematics, (2014).

[3]

M. Bodnar and J. J. L. Velazquez, Derivation of macroscopic equations for individual cell-based models: A formal approach,, Math. Meth. Appl. Sci., 28 (2005), 1757. doi: 10.1002/mma.638.

[4]

Z. Brzezniak, M. Ondrejat and E. Motyl, Invariant measure for the stochastic Navier-Stokes equations in unbounded 2D domains, preprint,, , ().

[5]

Z. Brzezniak and E. Motyl, Existence of a martingale solution of the stochastic Navier-Stokes equations in unbounded 2D and 3D-domains,, J. Diff. Eq., 254 (2013), 1627. doi: 10.1016/j.jde.2012.10.009.

[6]

F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, preprint,, Probab. Theory Relat. Fields, 102 (1995), 367. doi: 10.1007/BF01192467.

[7]

J. L. Lions, Quelques Methodes de Resolution des Problemes aux Limites non Lineaires,, Dunod, (1969).

[8]

S. Meleard and V. Bansaye, Some Stochastic Models for Structured Populations: Scaling Limits and Long Time Behavior,, Stochastics in Biological Systems, (2015). doi: 10.1007/978-3-319-21711-6.

[9]

M. Metivier, Quelques problèmes liés aux systèmes infinis de particules et leurs limites,, Séminaire de Probabilités, 20 (1986), 426. doi: 10.1007/BFb0075734.

[10]

G. Nappo and E. Orlandi, Limit laws for a coagulation model of interacting random particles,, Annales de l'I.H.P. section B, 24 (1988), 319.

[11]

K. Oelschläger, A law of large numbers for moderately interacting diffusion processes,, Zeitschrift fur Wahrsch. Verwandte Gebiete, 69 (1985), 279. doi: 10.1007/BF02450284.

[12]

K. Oelschläger, On the Derivation of Reaction-Diffusion Equations as Limit Dynamics of Systems of Moderately Interacting Stochastic Processes,, Probab. Th. Rel. Fields, 82 (1989), 565. doi: 10.1007/BF00341284.

[13]

R. Philipowski, Interacting diffusions approximating the porous medium equation and propagation of chaos,, Stoch. Proc. Appl., 117 (2007), 526. doi: 10.1016/j.spa.2006.09.003.

[14]

A. Stevens, The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems,, SIAM J. Appl. Math., 61 (2000), 183. doi: 10.1137/S0036139998342065.

[15]

S. He, J. Wang and J. A. Yan, Semimartingale Theory and Stochastic Calculus,, Beijing: Science Press, (1992).

[16]

P. Hinow, P. Gerlee, L. J. McCawley, V. Quaranta, M. Ciobanu, S. Wang, J. M. Graham, B. P. Ayati, J. Claridge, K. R. Swanson, M. Loveless and A. R. A. Anderson, A spatial model of tumor-host interaction: Application of chemoterapy,, Math. Biosc. Engin., 6 (2009), 521.

[17]

K. Uchiyama, Pressure in classical Statistical Mechanics and interacting Brownian particles in multi-dimensions,, Ann. H. Poincaré, 1 (2000), 1159. doi: 10.1007/PL00001025.

[18]

S. R. S. Varadhan, Scaling limit for interacting diffusions,, Comm. Math. Phys., 135 (1991), 313. doi: 10.1007/BF02098046.

[1]

Rong Yang, Li Chen. Mean-field limit for a collision-avoiding flocking system and the time-asymptotic flocking dynamics for the kinetic equation. Kinetic & Related Models, 2014, 7 (2) : 381-400. doi: 10.3934/krm.2014.7.381

[2]

Charles Bordenave, David R. McDonald, Alexandre Proutière. A particle system in interaction with a rapidly varying environment: Mean field limits and applications. Networks & Heterogeneous Media, 2010, 5 (1) : 31-62. doi: 10.3934/nhm.2010.5.31

[3]

Michael Herty, Mattia Zanella. Performance bounds for the mean-field limit of constrained dynamics. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2023-2043. doi: 10.3934/dcds.2017086

[4]

Kazuhisa Ichikawa, Mahemauti Rouzimaimaiti, Takashi Suzuki. Reaction diffusion equation with non-local term arises as a mean field limit of the master equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 115-126. doi: 10.3934/dcdss.2012.5.115

[5]

Vadim Kaushansky, Christoph Reisinger. Simulation of a simple particle system interacting through hitting times. Discrete & Continuous Dynamical Systems - B, 2017, 12 (11) : 1-22. doi: 10.3934/dcdsb.2019067

[6]

Nicolo' Catapano. The rigorous derivation of the Linear Landau equation from a particle system in a weak-coupling limit. Kinetic & Related Models, 2018, 11 (3) : 647-695. doi: 10.3934/krm.2018027

[7]

Martin Burger, Marco Di Francesco, Peter A. Markowich, Marie-Therese Wolfram. Mean field games with nonlinear mobilities in pedestrian dynamics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1311-1333. doi: 10.3934/dcdsb.2014.19.1311

[8]

Carmen G. Higuera-Chan, Héctor Jasso-Fuentes, J. Adolfo Minjárez-Sosa. Control systems of interacting objects modeled as a game against nature under a mean field approach. Journal of Dynamics & Games, 2017, 4 (1) : 59-74. doi: 10.3934/jdg.2017004

[9]

Gerasimenko Viktor. Heisenberg picture of quantum kinetic evolution in mean-field limit. Kinetic & Related Models, 2011, 4 (1) : 385-399. doi: 10.3934/krm.2011.4.385

[10]

Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. Uniform stability and mean-field limit for the augmented Kuramoto model. Networks & Heterogeneous Media, 2018, 13 (2) : 297-322. doi: 10.3934/nhm.2018013

[11]

Juan Pablo Maldonado López. Discrete time mean field games: The short-stage limit. Journal of Dynamics & Games, 2015, 2 (1) : 89-101. doi: 10.3934/jdg.2015.2.89

[12]

Franco Flandoli, Marta Leocata, Cristiano Ricci. The Vlasov-Navier-Stokes equations as a mean field limit. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-13. doi: 10.3934/dcdsb.2018313

[13]

Hayato Chiba, Georgi S. Medvedev. The mean field analysis of the Kuramoto model on graphs Ⅰ. The mean field equation and transition point formulas. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 131-155. doi: 10.3934/dcds.2019006

[14]

Jong-Shenq Guo, Satoshi Sasayama, Chi-Jen Wang. Blowup rate estimate for a system of semilinear parabolic equations. Communications on Pure & Applied Analysis, 2009, 8 (2) : 711-718. doi: 10.3934/cpaa.2009.8.711

[15]

Yves Achdou, Mathieu Laurière. On the system of partial differential equations arising in mean field type control. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3879-3900. doi: 10.3934/dcds.2015.35.3879

[16]

Minkyu Kwak, Kyong Yu. The asymptotic behavior of solutions of a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 483-496. doi: 10.3934/dcds.1996.2.483

[17]

Andrei Fursikov. The simplest semilinear parabolic equation of normal type. Mathematical Control & Related Fields, 2012, 2 (2) : 141-170. doi: 10.3934/mcrf.2012.2.141

[18]

Shota Sato, Eiji Yanagida. Appearance of anomalous singularities in a semilinear parabolic equation. Communications on Pure & Applied Analysis, 2012, 11 (1) : 387-405. doi: 10.3934/cpaa.2012.11.387

[19]

Zhengce Zhang, Bei Hu. Gradient blowup rate for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 767-779. doi: 10.3934/dcds.2010.26.767

[20]

Yang Cao, Jingxue Yin. Small perturbation of a semilinear pseudo-parabolic equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 631-642. doi: 10.3934/dcds.2016.36.631

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]