Advanced Search
Article Contents
Article Contents

# Global bifurcation diagrams of one node solutions in a class of degenerate boundary value problems

• * Corresponding author: Julián López-Gómez

This paper is dedicated to R.S.Cantrell on the occasion of his 60th birthday, for his pioneering work on the effects of spatial heterogeneities on nonlinear differential equations. With our friendship and best wishes for the future

Partially supported by grants MTM2012-30669 and MTM2015-65899-P of the Spanish Ministry of Economy and Competitiveness of Spain and the IMI of Complutense University.
• In [12], the structure of the set of possible solutions of a degenerate boundary value problem was studied. For solutions with one interior zero, there were two possibilities for the solution set. In this paper, numerical examples are given showing each of these possibilities can occur.

Mathematics Subject Classification: Primary:35J15, 35A15;Secondary:35B38, 35B36.

 Citation:

• Figure 1.  The weight function $a=a_{0}$

Figure 2.  The weight function $a=a_\varepsilon$ for $\varepsilon >0$

Figure 3.  The metasolution $\boldsymbol{\mathfrak{m}}_{[(\frac{\pi}{h})^2, 1, 0]}$ for $a=a_{0}$

Figure 4.  A solution $u_{[{\rm{\lambda }}, 1, 0]}\sim \boldsymbol{\mathfrak{m}}_{[(\frac{\pi}{h})^2, 1, 0]}$

Figure 5.  The global bifurcation diagram for $\varepsilon=0.1$ and $0\leq {\rm{\lambda }} \leq 60$

Figure 6.  A series of solution plots on the principal curve for $\pi^2 < {\rm{\lambda }} < 400$ (left) and $450 < {\rm{\lambda }} < 700$ (right)

Figure 7.  A series of solutions on the isola for $20 < {\rm{\lambda }} < 40$

Figure 8.  A series of solutions on the isola for $70 < {\rm{\lambda }} < 140$

Figure 9.  The zeroes of the solutions computed for ${\rm{\lambda }}\leq 180$

Figure 10.  A zoom of the bifurcation diagram for $\varepsilon=0.001$

Figure 11.  Two significant components of the bifurcation diagram

Figure 12.  Two magnifications of the bifurcation diagram

Figure 13.  The zeroes of the solutions computed for $\varepsilon=0.0037$

Figure 14.  Two significant magnifications of the zeroes plots

Figure 15.  A series of solution plots along $\mathfrak{C}_2^+$

Figure 16.  A series of solution plots along ${\mathfrak{J}}^+$

Figure 17.  Solution plots along $\mathfrak{C}_2^+$

Figure 18.  Crossing the turning point of ${\mathfrak{J}}^+$

Figure 19.  Two components of the bifurcation diagram for $\varepsilon=0.0036$

Figure 20.  The two components plotted in Figure 19

Figure 21.  The zeroes of the solutions computed for $\varepsilon=0.0036$

Figure 22.  Two significant magnifications of the zeroes plots

•  [1] J. C. Eilbeck, The pseudo-spectral method and path-following in reaction-diffusion bifurcation studies, SIAM J. of Sci. Stat. Comput., 7 (1986), 599-610.  doi: 10.1137/0907040. [2] J. M. Fraile, P. Koch, J. López-Gómez and S. Merino, Elliptic eigenvalue problems and unbounded continua of positive solutions of a semilinear elliptic equation, J. Diff. Eqns., 127 (1996), 295-319.  doi: 10.1006/jdeq.1996.0071. [3] J. E. Furter and J. López-Gómez, Diffusion-mediated permanence problem for a heterogeneous Lotka-Volterra competition model, Proc. Royal Soc. Edinburgh, 127 (1997), 281-336.  doi: 10.1017/S0308210500023659. [4] J. García-Melián, Multiplicity of positive solutions to boundary blow-up elliptic problems with sign changing weights, J. Funct. Anal., 261 (2011), 1775-1798.  doi: 10.1016/j.jfa.2011.05.018. [5] H. B. Keller, Lectures on Numerical Methods in Bifurcation Problems Tata Institute of Fundamental Research, Springer, Berlin, 1987. [6] J. López-Gómez, Approaching metasolutions by classical solutions, Differential and Integral Equations, 14 (2001), 739-750. [7] J. López-Gómez, Estabilidad y Bifurcación Estática. Aplicaciones y Métodos Numéricos Cuadernos de Matemática y Mecánica, Serie Cursos y Seminarios No 4, Santa Fe, 1988. [8] J. López-Gómez, Metasolutions: Malthus versus Verhulst in population dynamics. A dream of Volterra, in Handbook of Differential Equations "Stationary Partial Differential Equations", (eds. M. Chipot and P. Quittner), North Holland, 2 (2005), 211–309. [9] J. López-Gómez, Metasolutions of Parabolic Equations in Population Dynamics CRC Press, Boca Raton, 2015. [10] J. López-Gómez, M. Molina-Meyer and A. Tellini, Spiraling bifurcation diagrams in superlinear indefinite problems, Disc. Cont. Dyn. Systems A, 35 (2015), 1561-1588.  doi: 10.3934/dcds.2015.35.1561. [11] J. López-Gómez and P. H. Rabinowitz, The effects of spatial heterogeneities on some multiplicity results, Disc. Cont. Dyn. Systems A, 36 (2016), 941-952.  doi: 10.3934/dcds.2016.36.941. [12] J. López-Gómez and P. H. Rabinowitz, Nodal solutions for a class of degenerate boundary value problems, Adv. Nonl. Studies, 15 (2015), 253-288.  doi: 10.1515/ans-2015-0201. [13] J. López-Gómez and A. Tellini, Generating an arbitrarily large number of isolas in a superlinear indefinite problem, Nonlinear Analysis, 108 (2014), 223-248.  doi: 10.1016/j.na.2014.06.003. [14] H. Matano, Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 29 (1982), 401-441. [15] M. Molina-Meyer and F. R. Prieto-Medina, Numerical computation of classical and large solutions for the one-dimensional logistic equation with spatial heterogeneities, preprint. [16] T. Ouyang, On positive solutions of semilinear equations on compact manifolds, Ind. Math. J., 40 (1991), 1083-1141.  doi: 10.1512/iumj.1991.40.40049. [17] P. H. Rabinowitz, Nonlinear Sturm-Liouville problems for second order ordinary differential equations, Comm. Pure Appl. Math., 23 (1970), 939-961.  doi: 10.1002/cpa.3160230606. [18] P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513.  doi: 10.1016/0022-1236(71)90030-9. [19] P. H. Rabinowitz, A note on a nonlinear eigenvalue problem for a class of differential equations, J. Diff. Eqns., 9 (1971), 536-548.  doi: 10.1016/0022-0396(71)90022-2.

Figures(22)

## Article Metrics

HTML views(892) PDF downloads(283) Cited by(0)

## Other Articles By Authors

• on this site
• on Google Scholar

### Catalog

/

DownLoad:  Full-Size Img  PowerPoint