# American Institute of Mathematical Sciences

June  2017, 22(4): 1361-1392. doi: 10.3934/dcdsb.2017066

## Vanishing capillarity limit of the non-conservative compressible two-fluid model

 1 School of Mathematics and Center for Nonlinear Studies, Northwest University, Xi'an 710127, China 2 School of Mathematics, South China University of Technology, Guangzhou, 510641, China, School of Mathematics and Center for Nonlinear Studies, Northwest University, Xi'an 710127, China

* Corresponding author: Lei Yao

Received  February 2016 Revised  December 2016 Published  February 2017

Fund Project: Lai and Yao were supported by the National Natural Science Foundation of China #11571280,11331005, FANEDD #201315, Science and Technology Program of Shaanxi Province #2013KJXX-23, and China Scholarship Council. Wen was supported by the National Natural Science Foundation of China #11671150,11301205 and the Fundamental Research Funds for the Central Universities #D2154560.

In this paper, we consider the non-conservative compressible two-fluid model with constant viscosity coefficients and unequal pressure function in $\mathbb{R}^3$, we study the vanishing capillarity limit of the smooth solution to the initial value problem. We first establish the uniform estimates of global smooth solution with respect to the capillary coefficients $σ^+$ and $σ^-$, then by the Lion-Aubin lemma, we can obtain the unique smooth solution of the 3D non-conservative compressible two-fluid model with the capillary coefficients converges globally in time to the smooth solution of the 3D generic two-fluid model as $σ^+$ and $σ^-$ tend to zero. Also, we give the convergence rate estimates with respect to the capillary coefficients $σ^+$ and $σ^-$ for any given positive time.

Citation: Jin Lai, Huanyao Wen, Lei Yao. Vanishing capillarity limit of the non-conservative compressible two-fluid model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1361-1392. doi: 10.3934/dcdsb.2017066
##### References:
 [1] R. Adams, Sobolev Spaces, Springer-Verlag, New York, 1985.   Google Scholar [2] J. Bear, Dynamics of Fluids in Porous Media, Environmental Science Series, New York: Elsevier; 1972. reprinted with corrections, New York: Dover; 1988. Google Scholar [3] D. F. Bian, L. Yao and C. J. Zhu, Vanishing capillarity limit of the compressible fluid models of korteweg type to the Navier--Stokes equations, SIAM J. Math. Anal., 46 (2014), 1633-1650.  doi: 10.1137/130942231.  Google Scholar [4] D. Bresch, B. Desjardins, J.-M. Ghidaglia and E. Grenier, Global weak solutions to a generic two-fluid model, Arch. Rational Mech. Anal., 196 (2010), 599-629.  doi: 10.1007/s00205-009-0261-6.  Google Scholar [5] D. Bresch, X. D. Huang and J. Li, Global weak solutions to one-dimensional non-conservation viscous compressible two-phase system, Comm. Math. Phys., 309 (2012), 737-755.  doi: 10.1007/s00220-011-1379-6.  Google Scholar [6] H. B. Cui, W. J. Wang, L. Yao and C. J. Zhu, Decay rates for a nonconservative compressible generic two-fluid model, SIAM J. Math. Anal., 48 (2016), 470-512.  doi: 10.1137/15M1037792.  Google Scholar [7] R. Danchin and B. Desjardins, Existence of solutions for compressible fluid models of Koreteweg type, Ann. Inst. H. Pincare Anal. Non Lineaire, 18 (2001), 97-133.  doi: 10.1016/S0294-1449(00)00056-1.  Google Scholar [8] R. J. Duan, H. X. Liu, S. Ukai and T. Yang, Optimal $L^p$-$L^q$ convergence rates for the compressible Navier-Stokes equations with potential force, J. Differential Equations, 238 (2007), 220-233.  doi: 10.1016/j.jde.2007.03.008.  Google Scholar [9] R. J. Duan, S. Ukai, T. Yang and H. J. Zhao, Optimal convergence rates for the compressible Navier-Stokes equations with potential force, Math. Models Methods Appl. Sci., 17 (2007), 737-758.  doi: 10.1142/S021820250700208X.  Google Scholar [10] R. J. Duan, L. Z. Ruan and C. J. Zhu, Optimal decay rates to conservation laws with diffusion type terms of regularity-gain and regularity-loss, Math. Models Methods Appl. Sci., 22 (2012), 1250012, 39 pp.  doi: 10.1142/S0218202512500121.  Google Scholar [11] S. Evje, W. J. Wang and H. Y. Wen, Global well-posedness and decay rates of strong solutions to a non-conservative compressible two-fluid model, Arch. Rational Mech. Anal., 221 (2016), 1285-1316.  doi: 10.1007/s00205-016-0984-0.  Google Scholar [12] S. Evje, H. Y. Wen and L. Yao, Global solutions to a one-dimensional non-conservative two-phase model, Discrete Contin. Dyn. Syst., 36 (2016), 1927-1955.  doi: 10.3934/dcds.2016.36.1927.  Google Scholar [13] H. Hattori and D. Li, Solutions for two-dimensional stytem for materials of Korteweg type, SIAM J. Math. Anal., 25 (1994), 85-98.  doi: 10.1137/S003614109223413X.  Google Scholar [14] H. Hattori and D. Li, Global Solutions of a high-dimensional stytem for Korteweg type materials, J. Math. Anal. Appl., 198 (1996), 84-97.  doi: 10.1006/jmaa.1996.0069.  Google Scholar [15] H. Hattori and D. Li, The existence of global Solutions to a fluid dynamic model for materials for Korteweg type, J. Partial Differential Equations, 9 (1996), 323-342.   Google Scholar [16] D. Hoff and K. Zumbrum, Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves, Z. Angew. Math. Phys., 48 (1997), 597-614.  doi: 10.1007/s000330050049.  Google Scholar [17] M. Ishii, Thremo-Fluid Dynamic Theory of Two-Phase Flow, Eyrolles, paris, 1975.   Google Scholar [18] S. Kawashima, Systems of Hyperbolic-Parabolic Comprosite Type, with Applications to the Equations of Msgnetohydrodynsmics, Kyoto Unvisity, 1983. Google Scholar [19] M. Kotschote, Strong solutions for a compressible fluid model of Korteweg type, H. Poincaré Anal. Non Linéaire, 25 (2008), 679-696.  doi: 10.1016/j.anihpc.2007.03.005.  Google Scholar [20] D. L. Li, The Green's function of the Navier-Stokes equations for the gas dynamics in $\mathbb{R}^3$, Comm. Math. Phys., 257 (2005), 579-619.  doi: 10.1007/s00220-005-1351-4.  Google Scholar [21] T. P. Liu and W. K. Wang, The pointwise estimates of diffusion waves for the Navier-Stokes equations in odd multi-dimensions, Comm. Math. Phys., 196 (1998), 145-173.  doi: 10.1007/s002200050418.  Google Scholar [22] A. J. Madjda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, 2002.   Google Scholar [23] A. Matsumura and T. Nishida, The intial value problem for the equation of motion of compressible viscous and heat-conductive gases, J. Math. Kyoto Univ, 20 (1980), 67-104.   Google Scholar [24] A. Prosperertti, Computational Methods for Multiphase Flow, Cambridge University Press, 2007.   Google Scholar [25] X. K. Pu and B. L. Guo, Global existence and semiclassical limit for quantum hydrodynamic equations with viscosity and heat conduction, Kinet. Relat. Models, 9 (2016), 165-191.  doi: 10.3934/krm.2016.9.165.  Google Scholar [26] I. E. Segal, Quantization and dispersion for nonlinear relativistic equations, Mathematical Theory of Elementary Particles, MIT Press, Cambridge, MA,, (1996), 79-108.   Google Scholar [27] J. Simon, Nonhomogeneous viscous incompressible fluids: Existence of velocity, density, and pressure, SIAM J. Math. Anal., 21 (1990), 1093-1117.  doi: 10.1137/0521061.  Google Scholar [28] M. E. Taylor, Partial Differential Equations Ⅲ: Nonlinear Equations, Springer, New York, 1997.   Google Scholar [29] Y. J. Wang and Z. Tan, Optimal decay rates for the compressible fluid models of Korteweg type, J. Math. Anal. Appl., 379 (2011), 256-271.  doi: 10.1016/j.jmaa.2011.01.006.  Google Scholar

show all references

##### References:
 [1] R. Adams, Sobolev Spaces, Springer-Verlag, New York, 1985.   Google Scholar [2] J. Bear, Dynamics of Fluids in Porous Media, Environmental Science Series, New York: Elsevier; 1972. reprinted with corrections, New York: Dover; 1988. Google Scholar [3] D. F. Bian, L. Yao and C. J. Zhu, Vanishing capillarity limit of the compressible fluid models of korteweg type to the Navier--Stokes equations, SIAM J. Math. Anal., 46 (2014), 1633-1650.  doi: 10.1137/130942231.  Google Scholar [4] D. Bresch, B. Desjardins, J.-M. Ghidaglia and E. Grenier, Global weak solutions to a generic two-fluid model, Arch. Rational Mech. Anal., 196 (2010), 599-629.  doi: 10.1007/s00205-009-0261-6.  Google Scholar [5] D. Bresch, X. D. Huang and J. Li, Global weak solutions to one-dimensional non-conservation viscous compressible two-phase system, Comm. Math. Phys., 309 (2012), 737-755.  doi: 10.1007/s00220-011-1379-6.  Google Scholar [6] H. B. Cui, W. J. Wang, L. Yao and C. J. Zhu, Decay rates for a nonconservative compressible generic two-fluid model, SIAM J. Math. Anal., 48 (2016), 470-512.  doi: 10.1137/15M1037792.  Google Scholar [7] R. Danchin and B. Desjardins, Existence of solutions for compressible fluid models of Koreteweg type, Ann. Inst. H. Pincare Anal. Non Lineaire, 18 (2001), 97-133.  doi: 10.1016/S0294-1449(00)00056-1.  Google Scholar [8] R. J. Duan, H. X. Liu, S. Ukai and T. Yang, Optimal $L^p$-$L^q$ convergence rates for the compressible Navier-Stokes equations with potential force, J. Differential Equations, 238 (2007), 220-233.  doi: 10.1016/j.jde.2007.03.008.  Google Scholar [9] R. J. Duan, S. Ukai, T. Yang and H. J. Zhao, Optimal convergence rates for the compressible Navier-Stokes equations with potential force, Math. Models Methods Appl. Sci., 17 (2007), 737-758.  doi: 10.1142/S021820250700208X.  Google Scholar [10] R. J. Duan, L. Z. Ruan and C. J. Zhu, Optimal decay rates to conservation laws with diffusion type terms of regularity-gain and regularity-loss, Math. Models Methods Appl. Sci., 22 (2012), 1250012, 39 pp.  doi: 10.1142/S0218202512500121.  Google Scholar [11] S. Evje, W. J. Wang and H. Y. Wen, Global well-posedness and decay rates of strong solutions to a non-conservative compressible two-fluid model, Arch. Rational Mech. Anal., 221 (2016), 1285-1316.  doi: 10.1007/s00205-016-0984-0.  Google Scholar [12] S. Evje, H. Y. Wen and L. Yao, Global solutions to a one-dimensional non-conservative two-phase model, Discrete Contin. Dyn. Syst., 36 (2016), 1927-1955.  doi: 10.3934/dcds.2016.36.1927.  Google Scholar [13] H. Hattori and D. Li, Solutions for two-dimensional stytem for materials of Korteweg type, SIAM J. Math. Anal., 25 (1994), 85-98.  doi: 10.1137/S003614109223413X.  Google Scholar [14] H. Hattori and D. Li, Global Solutions of a high-dimensional stytem for Korteweg type materials, J. Math. Anal. Appl., 198 (1996), 84-97.  doi: 10.1006/jmaa.1996.0069.  Google Scholar [15] H. Hattori and D. Li, The existence of global Solutions to a fluid dynamic model for materials for Korteweg type, J. Partial Differential Equations, 9 (1996), 323-342.   Google Scholar [16] D. Hoff and K. Zumbrum, Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves, Z. Angew. Math. Phys., 48 (1997), 597-614.  doi: 10.1007/s000330050049.  Google Scholar [17] M. Ishii, Thremo-Fluid Dynamic Theory of Two-Phase Flow, Eyrolles, paris, 1975.   Google Scholar [18] S. Kawashima, Systems of Hyperbolic-Parabolic Comprosite Type, with Applications to the Equations of Msgnetohydrodynsmics, Kyoto Unvisity, 1983. Google Scholar [19] M. Kotschote, Strong solutions for a compressible fluid model of Korteweg type, H. Poincaré Anal. Non Linéaire, 25 (2008), 679-696.  doi: 10.1016/j.anihpc.2007.03.005.  Google Scholar [20] D. L. Li, The Green's function of the Navier-Stokes equations for the gas dynamics in $\mathbb{R}^3$, Comm. Math. Phys., 257 (2005), 579-619.  doi: 10.1007/s00220-005-1351-4.  Google Scholar [21] T. P. Liu and W. K. Wang, The pointwise estimates of diffusion waves for the Navier-Stokes equations in odd multi-dimensions, Comm. Math. Phys., 196 (1998), 145-173.  doi: 10.1007/s002200050418.  Google Scholar [22] A. J. Madjda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, 2002.   Google Scholar [23] A. Matsumura and T. Nishida, The intial value problem for the equation of motion of compressible viscous and heat-conductive gases, J. Math. Kyoto Univ, 20 (1980), 67-104.   Google Scholar [24] A. Prosperertti, Computational Methods for Multiphase Flow, Cambridge University Press, 2007.   Google Scholar [25] X. K. Pu and B. L. Guo, Global existence and semiclassical limit for quantum hydrodynamic equations with viscosity and heat conduction, Kinet. Relat. Models, 9 (2016), 165-191.  doi: 10.3934/krm.2016.9.165.  Google Scholar [26] I. E. Segal, Quantization and dispersion for nonlinear relativistic equations, Mathematical Theory of Elementary Particles, MIT Press, Cambridge, MA,, (1996), 79-108.   Google Scholar [27] J. Simon, Nonhomogeneous viscous incompressible fluids: Existence of velocity, density, and pressure, SIAM J. Math. Anal., 21 (1990), 1093-1117.  doi: 10.1137/0521061.  Google Scholar [28] M. E. Taylor, Partial Differential Equations Ⅲ: Nonlinear Equations, Springer, New York, 1997.   Google Scholar [29] Y. J. Wang and Z. Tan, Optimal decay rates for the compressible fluid models of Korteweg type, J. Math. Anal. Appl., 379 (2011), 256-271.  doi: 10.1016/j.jmaa.2011.01.006.  Google Scholar
 [1] Steinar Evje, Huanyao Wen, Lei Yao. Global solutions to a one-dimensional non-conservative two-phase model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1927-1955. doi: 10.3934/dcds.2016.36.1927 [2] Xuemei Li, Zaijiu Shang. On the existence of invariant tori in non-conservative dynamical systems with degeneracy and finite differentiability. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4225-4257. doi: 10.3934/dcds.2019171 [3] Haibo Cui, Zhensheng Gao, Haiyan Yin, Peixing Zhang. Stationary waves to the two-fluid non-isentropic Navier-Stokes-Poisson system in a half line: Existence, stability and convergence rate. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4839-4870. doi: 10.3934/dcds.2016009 [4] Antonio Fasano, Marco Gabrielli, Alberto Gandolfi. Investigating the steady state of multicellular spheroids by revisiting the two-fluid model. Mathematical Biosciences & Engineering, 2011, 8 (2) : 239-252. doi: 10.3934/mbe.2011.8.239 [5] Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415 [6] Qiangchang Ju, Hailiang Li, Yong Li, Song Jiang. Quasi-neutral limit of the two-fluid Euler-Poisson system. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1577-1590. doi: 10.3934/cpaa.2010.9.1577 [7] Barbara Lee Keyfitz, Richard Sanders, Michael Sever. Lack of hyperbolicity in the two-fluid model for two-phase incompressible flow. Discrete & Continuous Dynamical Systems - B, 2003, 3 (4) : 541-563. doi: 10.3934/dcdsb.2003.3.541 [8] Wenjun Wang, Lei Yao. Vanishing viscosity limit to rarefaction waves for the full compressible fluid models of Korteweg type. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2331-2350. doi: 10.3934/cpaa.2014.13.2331 [9] Antonio Fasano, Marco Gabrielli, Alberto Gandolfi. Erratum to: Investigating the steady state of multicellular sheroids by revisiting the two-fluid model. Mathematical Biosciences & Engineering, 2012, 9 (3) : 697-697. doi: 10.3934/mbe.2012.9.697 [10] Jingrui Su. Global existence and low Mach number limit to a 3D compressible micropolar fluids model in a bounded domain. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3423-3434. doi: 10.3934/dcds.2017145 [11] Jan Giesselmann, Niklas Kolbe, Mária Lukáčová-Medvi${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over d} }}$ová, Nikolaos Sfakianakis. Existence and uniqueness of global classical solutions to a two dimensional two species cancer invasion haptotaxis model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4397-4431. doi: 10.3934/dcdsb.2018169 [12] Seung-Yeal Ha, Bingkang Huang, Qinghua Xiao, Xiongtao Zhang. A global existence of classical solutions to the two-dimensional kinetic-fluid model for flocking with large initial data. Communications on Pure & Applied Analysis, 2020, 19 (2) : 835-882. doi: 10.3934/cpaa.2020039 [13] Prasanta Kumar Barik, Ankik Kumar Giri. A note on mass-conserving solutions to the coagulation-fragmentation equation by using non-conservative approximation. Kinetic & Related Models, 2018, 11 (5) : 1125-1138. doi: 10.3934/krm.2018043 [14] Hua Chen, Jian-Meng Li, Kelei Wang. On the vanishing viscosity limit of a chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2020, 40 (3) : 1963-1987. doi: 10.3934/dcds.2020101 [15] Li Fang, Zhenhua Guo. Zero dissipation limit to rarefaction wave with vacuum for a one-dimensional compressible non-Newtonian fluid. Communications on Pure & Applied Analysis, 2017, 16 (1) : 209-242. doi: 10.3934/cpaa.2017010 [16] J. F. Toland. Non-existence of global energy minimisers in Stokes waves problems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3211-3217. doi: 10.3934/dcds.2014.34.3211 [17] Konstantina Trivisa. Global existence and asymptotic analysis of solutions to a model for the dynamic combustion of compressible fluids. Conference Publications, 2003, 2003 (Special) : 852-863. doi: 10.3934/proc.2003.2003.852 [18] Abelardo Duarte-Rodríguez, Lucas C. F. Ferreira, Élder J. Villamizar-Roa. Global existence for an attraction-repulsion chemotaxis fluid model with logistic source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 423-447. doi: 10.3934/dcdsb.2018180 [19] Yingshan Chen, Shijin Ding, Wenjun Wang. Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5287-5307. doi: 10.3934/dcds.2016032 [20] Xinghong Pan, Jiang Xu. Global existence and optimal decay estimates of the compressible viscoelastic flows in $L^p$ critical spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2021-2057. doi: 10.3934/dcds.2019085

2018 Impact Factor: 1.008