    June  2017, 22(4): 1743-1755. doi: 10.3934/dcdsb.2017083

## Instantaneous shrinking and extinction for a non-Newtonian polytropic filtration equation with orientated convection

 1 College of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, China 2 School of Mathematical Sciences, South China, Normal University, Guangzhou 510631, China

Received  August 2014 Revised  June 02, 2015 Published  February 2017

Fund Project: The second author is supported by National Natural Science Foundation of China (grant 11371153).

This paper is concerned with the instantaneous shrinking and extinction for a non-Newtonian polytropic filtration equation with orientated convection
 $\frac{\partial u}{\partial t}=\text{div}\left( {{\left| \nabla {{u}^{m}} \right|}^{p-2}}\nabla {{u}^{m}} \right)|-\overrightarrow{\beta }\left( x \right)\cdot \triangledown {{u}^{q}},\ \ \ \ x\in {{\mathbb{R}}^{N}},t>0$
where
 $p>1, m,q>0, N≥1$
and
 $\overrightarrow{β}(x)$
is a vector field defined on
 $\mathbb{R}^{N}$
. Here, the orientation of the convection is specified to that with counteracting diffusion, that is
 $\overrightarrow{β}(x)·(-x)≥0$
,
 $x∈\mathbb{R}^N$
. Sufficient conditions are established for the instantaneous shrinking property of solutions with decayed initial datum of supports. For a certain class of initial datum, it is shown that there exists a critical time
 $τ^*>0$
such that the supports of solutions are unbounded above for any
 $t < τ^*$
, whilst the opposite is the case for any
 $t>τ^*$
. In addition, we prove that once the supports of solutions shrink instantaneously, the solutions will vanish in finite time.
Citation: Hailong Ye, Jingxue Yin. Instantaneous shrinking and extinction for a non-Newtonian polytropic filtration equation with orientated convection. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1743-1755. doi: 10.3934/dcdsb.2017083
##### References:
  U. G. Abdullaev, Instantaneous shrinking of the support of solutions to a nonlinear degenerate parabolic equation(Russian), Mat. Zametki, 63 (1998), 323-331; translation in Math. Notes, 63 (1998), 285-292. doi: 10.1007/BF02317772.  Google Scholar  S. N. Antontsev and S. I. Shmarev, Doubly degenerate parabolic equations with variable nonlinearity Ⅱ: Blow-up and extinction in a finite time,, Nonlinear Anal., 95 (2014), 483-498. doi: 10.1016/j.na.2013.09.027.  Google Scholar  R. Aris, The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, Ⅰ, Ⅱ, , Clarendon: Oxford, 1975.Google Scholar  J. Bear, Dynamics of fluids in porous media, Soil Science, 120 (1975), 162-163. doi: 10.1097/00010694-197508000-00022. Google Scholar  M. Borelli and M. Ughi, The fast diffusion equation with strong absorption: The instantaneous shrinking phenomenon, Rend. Istit. Mat. Univ. Trieste, 26 (1994), 109-140. Google Scholar  R. Carles and C. Gallo, Finite time extinction by nonlinear damping for the Schrödinger equation, Comm. Partial Differential Equations, 36 (2011), 961-975. doi: 10.1080/03605302.2010.531074.  Google Scholar  E. C. Childs, An Introduction to the Physical Basis of Soil Water Phenomena, Wiley: London, 1969.Google Scholar  L. Evans and B. F. Knerr, Instantaneous shrinking of the support of nonnegative solutions to certain nonlinear parabolic equations and variational inequalities, Ill. J. Math., 23 (1979), 153-166. Google Scholar  B. H. Gilding and R. Kersner, Instantaneous shrinking in nonlinear diffusion-convection, Proc. Amer. Math. Soc., 109 (1990), 385-394. doi: 10.1090/S0002-9939-1990-1007496-9.  Google Scholar  R. G. Iagar and P. Laurençot, Positivity, decay, and extinction for a singular diffusion equation with gradient absorption, J. Funct. Anal., 262 (2012), 3186-3239. doi: 10.1016/j.jfa.2012.01.013.  Google Scholar  A. S. Kalašhnikov, The nature of the propagation of perturbations in problems of non-linear heat conduction with absorption, USSR Comp. Math. Math. Phys., 14 (1974), 70-85. Google Scholar  M. Ohnuma and K. Sato, Singular degenerate parabolic equations with applications to the p-Laplace diffusion equation, Communications in Partial Differential Equations, 22 (1997), 381-411. doi: 10.1080/03605309708821268.  Google Scholar  N. Su, Compactification of supports of solutions for nonlinear parabolic equations, Nonlinear Anal., 29 (1997), 347-363. doi: 10.1016/S0362-546X(96)00076-4.  Google Scholar  J. L. Vázquez, The Prorous Medium Equation: Mathematical Theory, Clarendon Press: Oxford, 2007. Google Scholar  Z. Wu, J. Zhao, J. Yin and H. Li, Nonlinear Diffusion Equations, World Scientific: Singapore, 2001. doi: 10.1142/9789812799791.  Google Scholar  H. Ye and J. Yin, Propagation profile for a non-Newtonian polytropic filtration equation with orientated convection, J. Math. Anal. Appl., 421 (2014), 1225-1237. doi: 10.1016/j.jmaa.2014.07.077.  Google Scholar  H. Yuan, S. Lian, W. Gao, X. Xu and C. Cao, Extinction and positivity for the evolution p-Laplacian equation in ${{\mathbb{R}}^{N}}$, Nonlinear Analysis, 60 (2005), 1085-1091. doi: 10.1016/j.na.2004.10.009.  Google Scholar

show all references

##### References:
  U. G. Abdullaev, Instantaneous shrinking of the support of solutions to a nonlinear degenerate parabolic equation(Russian), Mat. Zametki, 63 (1998), 323-331; translation in Math. Notes, 63 (1998), 285-292. doi: 10.1007/BF02317772.  Google Scholar  S. N. Antontsev and S. I. Shmarev, Doubly degenerate parabolic equations with variable nonlinearity Ⅱ: Blow-up and extinction in a finite time,, Nonlinear Anal., 95 (2014), 483-498. doi: 10.1016/j.na.2013.09.027.  Google Scholar  R. Aris, The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, Ⅰ, Ⅱ, , Clarendon: Oxford, 1975.Google Scholar  J. Bear, Dynamics of fluids in porous media, Soil Science, 120 (1975), 162-163. doi: 10.1097/00010694-197508000-00022. Google Scholar  M. Borelli and M. Ughi, The fast diffusion equation with strong absorption: The instantaneous shrinking phenomenon, Rend. Istit. Mat. Univ. Trieste, 26 (1994), 109-140. Google Scholar  R. Carles and C. Gallo, Finite time extinction by nonlinear damping for the Schrödinger equation, Comm. Partial Differential Equations, 36 (2011), 961-975. doi: 10.1080/03605302.2010.531074.  Google Scholar  E. C. Childs, An Introduction to the Physical Basis of Soil Water Phenomena, Wiley: London, 1969.Google Scholar  L. Evans and B. F. Knerr, Instantaneous shrinking of the support of nonnegative solutions to certain nonlinear parabolic equations and variational inequalities, Ill. J. Math., 23 (1979), 153-166. Google Scholar  B. H. Gilding and R. Kersner, Instantaneous shrinking in nonlinear diffusion-convection, Proc. Amer. Math. Soc., 109 (1990), 385-394. doi: 10.1090/S0002-9939-1990-1007496-9.  Google Scholar  R. G. Iagar and P. Laurençot, Positivity, decay, and extinction for a singular diffusion equation with gradient absorption, J. Funct. Anal., 262 (2012), 3186-3239. doi: 10.1016/j.jfa.2012.01.013.  Google Scholar  A. S. Kalašhnikov, The nature of the propagation of perturbations in problems of non-linear heat conduction with absorption, USSR Comp. Math. Math. Phys., 14 (1974), 70-85. Google Scholar  M. Ohnuma and K. Sato, Singular degenerate parabolic equations with applications to the p-Laplace diffusion equation, Communications in Partial Differential Equations, 22 (1997), 381-411. doi: 10.1080/03605309708821268.  Google Scholar  N. Su, Compactification of supports of solutions for nonlinear parabolic equations, Nonlinear Anal., 29 (1997), 347-363. doi: 10.1016/S0362-546X(96)00076-4.  Google Scholar  J. L. Vázquez, The Prorous Medium Equation: Mathematical Theory, Clarendon Press: Oxford, 2007. Google Scholar  Z. Wu, J. Zhao, J. Yin and H. Li, Nonlinear Diffusion Equations, World Scientific: Singapore, 2001. doi: 10.1142/9789812799791.  Google Scholar  H. Ye and J. Yin, Propagation profile for a non-Newtonian polytropic filtration equation with orientated convection, J. Math. Anal. Appl., 421 (2014), 1225-1237. doi: 10.1016/j.jmaa.2014.07.077.  Google Scholar  H. Yuan, S. Lian, W. Gao, X. Xu and C. Cao, Extinction and positivity for the evolution p-Laplacian equation in ${{\mathbb{R}}^{N}}$, Nonlinear Analysis, 60 (2005), 1085-1091. doi: 10.1016/j.na.2004.10.009.  Google Scholar
  Emil Novruzov. On existence and nonexistence of the positive solutions of non-newtonian filtration equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 719-730. doi: 10.3934/cpaa.2011.10.719  Lars Diening, Michael Růžička. An existence result for non-Newtonian fluids in non-regular domains. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 255-268. doi: 10.3934/dcdss.2010.3.255  Guangyu Xu, Jun Zhou. Global existence and blow-up of solutions to a singular Non-Newton polytropic filtration equation with critical and supercritical initial energy. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1805-1820. doi: 10.3934/cpaa.2018086  Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero, Michael Z. Zgurovsky. Strong attractors for vanishing viscosity approximations of non-Newtonian suspension flows. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1155-1176. doi: 10.3934/dcdsb.2018146  Mohamed Tij, Andrés Santos. Non-Newtonian Couette-Poiseuille flow of a dilute gas. Kinetic & Related Models, 2011, 4 (1) : 361-384. doi: 10.3934/krm.2011.4.361  Jan Sokołowski, Jan Stebel. Shape optimization for non-Newtonian fluids in time-dependent domains. Evolution Equations & Control Theory, 2014, 3 (2) : 331-348. doi: 10.3934/eect.2014.3.331  Changli Yuan, Mojdeh Delshad, Mary F. Wheeler. Modeling multiphase non-Newtonian polymer flow in IPARS parallel framework. Networks & Heterogeneous Media, 2010, 5 (3) : 583-602. doi: 10.3934/nhm.2010.5.583  Aneta Wróblewska-Kamińska. Unsteady flows of non-Newtonian fluids in generalized Orlicz spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2565-2592. doi: 10.3934/dcds.2013.33.2565  M. Bulíček, F. Ettwein, P. Kaplický, Dalibor Pražák. The dimension of the attractor for the 3D flow of a non-Newtonian fluid. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1503-1520. doi: 10.3934/cpaa.2009.8.1503  Linfang Liu, Tomás Caraballo, Xianlong Fu. Exponential stability of an incompressible non-Newtonian fluid with delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4285-4303. doi: 10.3934/dcdsb.2018138  Hafedh Bousbih. Global weak solutions for a coupled chemotaxis non-Newtonian fluid. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 907-929. doi: 10.3934/dcdsb.2018212  Bum Ja Jin, Kyungkeun Kang. Caccioppoli type inequality for non-Newtonian Stokes system and a local energy inequality of non-Newtonian Navier-Stokes equations without pressure. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4815-4834. doi: 10.3934/dcds.2017207  Jong Yeoul Park, Jae Ug Jeong. Pullback attractors for a $2D$-non-autonomous incompressible non-Newtonian fluid with variable delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2687-2702. doi: 10.3934/dcdsb.2016068  Guowei Liu, Rui Xue. Pullback dynamic behavior for a non-autonomous incompressible non-Newtonian fluid. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2193-2216. doi: 10.3934/dcdsb.2018231  Jin Li, Jianhua Huang. Dynamics of a 2D Stochastic non-Newtonian fluid driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2483-2508. doi: 10.3934/dcdsb.2012.17.2483  Aneta Wróblewska-Kamińska. Local pressure methods in Orlicz spaces for the motion of rigid bodies in a non-Newtonian fluid with general growth conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1417-1425. doi: 10.3934/dcdss.2013.6.1417  Li Fang, Zhenhua Guo. Zero dissipation limit to rarefaction wave with vacuum for a one-dimensional compressible non-Newtonian fluid. Communications on Pure & Applied Analysis, 2017, 16 (1) : 209-242. doi: 10.3934/cpaa.2017010  Zhenhua Guo, Wenchao Dong, Jinjing Liu. Large-time behavior of solution to an inflow problem on the half space for a class of compressible non-Newtonian fluids. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2133-2161. doi: 10.3934/cpaa.2019096  Muhammad Mansha Ghalib, Azhar Ali Zafar, Zakia Hammouch, Muhammad Bilal Riaz, Khurram Shabbir. Analytical results on the unsteady rotational flow of fractional-order non-Newtonian fluids with shear stress on the boundary. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 683-693. doi: 10.3934/dcdss.2020037  Ahmed Boudaoui, Tomás Caraballo, Abdelghani Ouahab. Stochastic differential equations with non-instantaneous impulses driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2521-2541. doi: 10.3934/dcdsb.2017084

2018 Impact Factor: 1.008