August 2017, 22(6): 2339-2350. doi: 10.3934/dcdsb.2017101

On the Kolmogorov entropy of the weak global attractor of 3D Navier-Stokes equations:Ⅰ

1. 

Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA

2. 

Department of Mathematics, Texas A & M University, College Station, TX 77843, USA

Bingsheng Zhang, E-mail address: shanby.bing@gmail.com

Received  June 2016 Revised  December 2016 Published  March 2017

One particular metric that generates the weak topology on the weak global attractor $\mathcal{A}_w$ of three dimensional incompressible Navier-Stokes equations is introduced and used to obtain an upper bound for the Kolmogorov entropy of $\mathcal{A}_w$. This bound is expressed explicitly in terms of the physical parameters of the fluid flow.

Citation: Yong Yang, Bingsheng Zhang. On the Kolmogorov entropy of the weak global attractor of 3D Navier-Stokes equations:Ⅰ. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2339-2350. doi: 10.3934/dcdsb.2017101
References:
[1]

A. Biswas, C. Foias and A. Larios, On the attractor for the semi-dissipative Boussinesq equation, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, Elsevier, 34 (2017), 381-405, arXiv: 1507.00080.

[2]

P. Constantin and C. Foias, Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractors for 2D Navier-Stokes equations, Communications on Pure and Applied Mathematics, 38 (1985), 1-27.

[3] P. Constantin and C. Foias, Navier-Stokes Equations, University of Chicago Press, Chicago Lectures in Mathematics, 1988.
[4]

R. M. Dudley, Metric entropy and the central limit theorem in C(S), Ann. Inst. Fourier (Grenoble), 24 (1974), 49-60.

[5]

C. FoiasO. P. ManleyR. Rosa and R. Temam, Navier-Stokes Equations and Turbulence, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, (2001).

[6]

C. Foias, C. Mondaini and B. Zhang, On the Kolmogorov entropy of the weak global attractor of 3D Navier-Stokes equations: Ⅱ, In preparation.

[7]

C. Foias, C. Mondaini and B. Zhang, Remarks on the Weak Global Attractor of 3D NavierStokes Equations, In preparation.

[8]

C. FoiasR. Rosa and R. Temam, Topological properties of the weak global attractor of the three-dimensional Navier-Stokes equations, Discrete and Continuous Dynamical System, 27 (2010), 1611-1631.

[9]

C. Foias and J. C. Saut, Asymptotic behavior, as t→ ∞ of solutions of Navier-Stokes equations and nonlinear spectral manifolds, Indiana University Mathematics Journal, 33 (1984), 459-477.

[10]

C. Foias and J. C. Saut, Asymptotic integration of Navier-Stokes equations with potential forces. Ⅰ, Indiana Univ. Math. J, 40 (1990), 305-320.

[11]

C. Foias and R. Temam, The connection between the Navier-Stokes equations. dynamical systems, and turbulence theory, in Directions in Partial Differential Equations (Madison, WI, 1985), Publ. Math. Res. Center Univ. Wilsconsin, 54, Academic Press, Boston, MA, 54 (1987), 55-73.

[12]

C. Foias and R. Temam, Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations, J.Maht.Pures et Appl., 58 (1979), 339-368.

[13]

A. N. Kolmogorov, On certain asymptotic characteristics of completely bounded metric spaces, Doki.Akad.Naus SSSR, 108 (1956), 385-388.

[14]

A. N. Kolmogorov, The representation of continuous functions of many variables by superposition of continuous functions of one variable and addition, Doklady Akademii Nauk SSSR, 114 (1957), 953-956.

[15]

A. N. Kolmogorov and V. M. Tikhomirov, $\epsilon$-entropy and $\epsilon$-capacity of sets in functional spaces, Amer. Math. Soc. Transl. Ser. 2, 17 (1961), 277-364.

[16]

S. Liu and B. Li, The functional dimension of some classes of spaces, Chin. Ann. Math., 26 (2005), 67-74.

[17]

R. Temam, Naviers-Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF Regional Conference Series in Applied Mathematical, 66. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1995.

[18]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition, Applied Mathematical Sciences, Springer-Verlag, New York, 68,1997.

[19]

V. M. Tikhomirov, On $\epsilon$-entropy of classes of analytic functions, Dokl. Akad. Nauk SSSR, 117 (1957), 191-194.

[20]

V. M. Tikhomirov, Approximation theory in the twentieth century, In Mathematical Events of the Twentieth Century. Springer, Berlin, (2006), 409-436.

show all references

References:
[1]

A. Biswas, C. Foias and A. Larios, On the attractor for the semi-dissipative Boussinesq equation, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, Elsevier, 34 (2017), 381-405, arXiv: 1507.00080.

[2]

P. Constantin and C. Foias, Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractors for 2D Navier-Stokes equations, Communications on Pure and Applied Mathematics, 38 (1985), 1-27.

[3] P. Constantin and C. Foias, Navier-Stokes Equations, University of Chicago Press, Chicago Lectures in Mathematics, 1988.
[4]

R. M. Dudley, Metric entropy and the central limit theorem in C(S), Ann. Inst. Fourier (Grenoble), 24 (1974), 49-60.

[5]

C. FoiasO. P. ManleyR. Rosa and R. Temam, Navier-Stokes Equations and Turbulence, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, (2001).

[6]

C. Foias, C. Mondaini and B. Zhang, On the Kolmogorov entropy of the weak global attractor of 3D Navier-Stokes equations: Ⅱ, In preparation.

[7]

C. Foias, C. Mondaini and B. Zhang, Remarks on the Weak Global Attractor of 3D NavierStokes Equations, In preparation.

[8]

C. FoiasR. Rosa and R. Temam, Topological properties of the weak global attractor of the three-dimensional Navier-Stokes equations, Discrete and Continuous Dynamical System, 27 (2010), 1611-1631.

[9]

C. Foias and J. C. Saut, Asymptotic behavior, as t→ ∞ of solutions of Navier-Stokes equations and nonlinear spectral manifolds, Indiana University Mathematics Journal, 33 (1984), 459-477.

[10]

C. Foias and J. C. Saut, Asymptotic integration of Navier-Stokes equations with potential forces. Ⅰ, Indiana Univ. Math. J, 40 (1990), 305-320.

[11]

C. Foias and R. Temam, The connection between the Navier-Stokes equations. dynamical systems, and turbulence theory, in Directions in Partial Differential Equations (Madison, WI, 1985), Publ. Math. Res. Center Univ. Wilsconsin, 54, Academic Press, Boston, MA, 54 (1987), 55-73.

[12]

C. Foias and R. Temam, Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations, J.Maht.Pures et Appl., 58 (1979), 339-368.

[13]

A. N. Kolmogorov, On certain asymptotic characteristics of completely bounded metric spaces, Doki.Akad.Naus SSSR, 108 (1956), 385-388.

[14]

A. N. Kolmogorov, The representation of continuous functions of many variables by superposition of continuous functions of one variable and addition, Doklady Akademii Nauk SSSR, 114 (1957), 953-956.

[15]

A. N. Kolmogorov and V. M. Tikhomirov, $\epsilon$-entropy and $\epsilon$-capacity of sets in functional spaces, Amer. Math. Soc. Transl. Ser. 2, 17 (1961), 277-364.

[16]

S. Liu and B. Li, The functional dimension of some classes of spaces, Chin. Ann. Math., 26 (2005), 67-74.

[17]

R. Temam, Naviers-Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF Regional Conference Series in Applied Mathematical, 66. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1995.

[18]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition, Applied Mathematical Sciences, Springer-Verlag, New York, 68,1997.

[19]

V. M. Tikhomirov, On $\epsilon$-entropy of classes of analytic functions, Dokl. Akad. Nauk SSSR, 117 (1957), 191-194.

[20]

V. M. Tikhomirov, Approximation theory in the twentieth century, In Mathematical Events of the Twentieth Century. Springer, Berlin, (2006), 409-436.

[1]

M. Bulíček, F. Ettwein, P. Kaplický, Dalibor Pražák. The dimension of the attractor for the 3D flow of a non-Newtonian fluid. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1503-1520. doi: 10.3934/cpaa.2009.8.1503

[2]

Huicheng Yin, Lin Zhang. The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball, Ⅱ: 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1063-1102. doi: 10.3934/dcds.2018045

[3]

Jingrui Wang, Keyan Wang. Almost sure existence of global weak solutions to the 3D incompressible Navier-Stokes equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5003-5019. doi: 10.3934/dcds.2017215

[4]

Xuanji Jia, Zaihong Jiang. An anisotropic regularity criterion for the 3D Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1299-1306. doi: 10.3934/cpaa.2013.12.1299

[5]

Hui Chen, Daoyuan Fang, Ting Zhang. Regularity of 3D axisymmetric Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1923-1939. doi: 10.3934/dcds.2017081

[6]

Chongsheng Cao. Sufficient conditions for the regularity to the 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1141-1151. doi: 10.3934/dcds.2010.26.1141

[7]

Vladimir V. Chepyzhov, E. S. Titi, Mark I. Vishik. On the convergence of solutions of the Leray-$\alpha $ model to the trajectory attractor of the 3D Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 481-500. doi: 10.3934/dcds.2007.17.481

[8]

Ciprian Foias, Ricardo Rosa, Roger Temam. Topological properties of the weak global attractor of the three-dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1611-1631. doi: 10.3934/dcds.2010.27.1611

[9]

Daoyuan Fang, Chenyin Qian. Regularity criterion for 3D Navier-Stokes equations in Besov spaces. Communications on Pure & Applied Analysis, 2014, 13 (2) : 585-603. doi: 10.3934/cpaa.2014.13.585

[10]

Zoran Grujić. Regularity of forward-in-time self-similar solutions to the 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 837-843. doi: 10.3934/dcds.2006.14.837

[11]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[12]

Alain Miranville, Xiaoming Wang. Upper bound on the dimension of the attractor for nonhomogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 95-110. doi: 10.3934/dcds.1996.2.95

[13]

T. Tachim Medjo. A non-autonomous 3D Lagrangian averaged Navier-Stokes-$\alpha$ model with oscillating external force and its global attractor. Communications on Pure & Applied Analysis, 2011, 10 (2) : 415-433. doi: 10.3934/cpaa.2011.10.415

[14]

Luca Bisconti, Davide Catania. Remarks on global attractors for the 3D Navier--Stokes equations with horizontal filtering. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 59-75. doi: 10.3934/dcdsb.2015.20.59

[15]

Ning Ju. The global attractor for the solutions to the 3D viscous primitive equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 159-179. doi: 10.3934/dcds.2007.17.159

[16]

Ning Ju. The finite dimensional global attractor for the 3D viscous Primitive Equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7001-7020. doi: 10.3934/dcds.2016104

[17]

Milan Pokorný, Piotr B. Mucha. 3D steady compressible Navier--Stokes equations. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 151-163. doi: 10.3934/dcdss.2008.1.151

[18]

Andrei Fursikov. Local existence theorems with unbounded set of input data and unboundedness of stable invariant manifolds for 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 269-289. doi: 10.3934/dcdss.2010.3.269

[19]

Keyan Wang. On global regularity of incompressible Navier-Stokes equations in $\mathbf R^3$. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1067-1072. doi: 10.3934/cpaa.2009.8.1067

[20]

A. V. Fursikov. Stabilization for the 3D Navier-Stokes system by feedback boundary control. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 289-314. doi: 10.3934/dcds.2004.10.289

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (3)
  • HTML views (1)
  • Cited by (0)

Other articles
by authors

[Back to Top]