July  2017, 22(5): 1899-1908. doi: 10.3934/dcdsb.2017113

Regularity of global attractors for reaction-diffusion systems with no more than quadratic growth

1. 

Taras Shevchenko National University of Kyiv, Volodymyrska Street 60,01601, Kyiv, Ukraine

2. 

Institute for Applied System Analysis, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremogy ave. 37, Build 35,03056, Kyiv, Ukraine

3. 

Universidad Miguel Hernandez de Elche, Centro de Investigación Operativa, Avda. Universidad s/n 03202-Elche (Alicante), Spain

* Corresponding author

Received  October 2015 Revised  April 2016 Published  March 2017

Fund Project: The first two authors have been partially supported by the Ukrainian State Fund for Fundamental Researches and the National Academy of Sciences of Ukraine, projects GP/F49/070, r.n. 0113U006191, and F2273/13, r.n. 0113U002978. The third author has been partially supported by Spanish Ministry of Economy and Competitiveness and FEDER, projects MTM2015-63723-P and MTM2012-31698, and by Junta de Andaluc´ıa under Proyecto de Excelencia P12-FQM-1492

We consider reaction-diffusion systems in a three-dimensional bounded domain under standard dissipativity conditions and quadratic growth conditions. No smoothness or monotonicity conditions are assumed. We prove that every weak solution is regular and use this fact to show that the global attractor of the corresponding multi-valued semiflow is compact in the space $(H_{0}^{1} (Ω))^{N}$.

Citation: Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Regularity of global attractors for reaction-diffusion systems with no more than quadratic growth. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1899-1908. doi: 10.3934/dcdsb.2017113
References:
[1]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, Providence, Rhode Island, 2002.Google Scholar

[2]

N. V. Gorban and P. O. Kasyanov, On regularity of all weak solutions and their attractors for reaction-diffusion inclusions in unbounded domains, in Continuous and distributed systems, Solid Mechanics and its Applications, (M. Z. Zgurovsky and V. A. Sadovnichiy eds. ), Springer International Publishing, Switzerland, 211 (2013), 205-220.Google Scholar

[3]

N. V. GorbanO. V. Kapustyan and P. O. Kasyanov, Uniform trajectory attractor for non-autonomous reaction-diffusion equations with Caratheodory's nonlinearity, Nonlinear Anal., 98 (2014), 13-26. doi: 10.1016/j.na.2013.12.004. Google Scholar

[4]

O. V. KapustyanP. O. Kasyanov and J. Valero, Structure and regularity of the global attractor of a reaction-diffusion equation with non-smooth nonlinear term, Discrete Contin. Dyn. Syst., 34 (2014), 4155-4182. doi: 10.3934/dcds.2014.34.4155. Google Scholar

[5]

O. V. KapustyanP. O. Kasyanov and J. Valero, Regular solutions and global attractors for reaction-diffusion systems without uniqueness, Communications on Pure and Applied Analysis, 13 (2014), 1891-1906. doi: 10.3934/cpaa.2014.13.1891. Google Scholar

[6]

O. V. Kapustyan, P. O. Kasyanov and J. Valero, Structure of the uniform global attractor for general non-autonomous reaction-diffusion systems, in Continuous and distributed systems, Solid Mechanics and its Applications 211 (M. Z. Zgurovsky and V. A. Sadovnichiy eds. ), Springer International Publishing Switzerland, 2014,163-180.Google Scholar

[7]

O. V. KapustyanP. O. Kasyanov and J. Valero, Structure of the global attractor for weak solutions of a reaction-diffusion equation, Appl. Math. Inf. Sci., 9 (2015), 2257-2264. Google Scholar

[8]

O. V. Kapustyan and J. Valero, On the Kneser property for the complex Ginzburg-Landau equation and the Lotka-Volterra system with diffusion, J. Math. Anal. Appl., 357 (2009), 254-272. doi: 10.1016/j.jmaa.2009.04.010. Google Scholar

[9]

O. V. Kapustyan and J. Valero, Comparison between trajectory and global attractors for evolution systems without uniqueness of solutions, Internat. J. Bifur. Chaos, 20 (2010), 2723-2734. doi: 10.1142/S0218127410027313. Google Scholar

[10]

P. O. KasyanovL. Toscano and N. V. Zadoianchuk, Regularity of weak solutions and their attractors for a parabolic feedback control problem, Set-Valued Var. Anal., 21 (2013), 271-282. doi: 10.1007/s11228-013-0233-8. Google Scholar

[11]

J. L. Lions and E. Magenes, Problémes Aux Limites Non-homogénes et Applications Dunod, Paris, 1968.Google Scholar

[12]

V. S. Melnik and J. Valero, On attractors of multi-valued semi-flows and differential inclusions, Set-Valued Anal., 6 (1998), 83-111. doi: 10.1023/A:1008608431399. Google Scholar

[13]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations Springer, 2002.Google Scholar

[14]

J. Smoller, Shock Waves and Reaction-Diffusion Equations Springer, New-York, 1983.Google Scholar

[15]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics Springer-Verlag, New York, 1997.Google Scholar

[16]

M. I. Vishik and A. V. Fursikov, Mathematical Problems of Statistical Hydromechanics, Kluwer Academic Publishers, Dordrecht, 1988.Google Scholar

[17]

M. I. VishikS. V. Zelik and V. V. Chepyzhov, Strong trajectory attractor of dissipative reaction-diffusion system, Doklady RAN, 435 (2010), 155-159. doi: 10.1134/S1064562410060086. Google Scholar

[18]

M. Z. Zgurovsky and P. O. Kasyanov, Multivalued dynamics of solutions for autonomous operator differential equations in strongest topologies, in Continuous and distributed systems, Solid Mechanics and its Applications 211 (M. Z. Zgurovsky and V. A. Sadovnichiy eds. ), Springer International Publishing, Switzerland, 2014,149-162.Google Scholar

show all references

References:
[1]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, Providence, Rhode Island, 2002.Google Scholar

[2]

N. V. Gorban and P. O. Kasyanov, On regularity of all weak solutions and their attractors for reaction-diffusion inclusions in unbounded domains, in Continuous and distributed systems, Solid Mechanics and its Applications, (M. Z. Zgurovsky and V. A. Sadovnichiy eds. ), Springer International Publishing, Switzerland, 211 (2013), 205-220.Google Scholar

[3]

N. V. GorbanO. V. Kapustyan and P. O. Kasyanov, Uniform trajectory attractor for non-autonomous reaction-diffusion equations with Caratheodory's nonlinearity, Nonlinear Anal., 98 (2014), 13-26. doi: 10.1016/j.na.2013.12.004. Google Scholar

[4]

O. V. KapustyanP. O. Kasyanov and J. Valero, Structure and regularity of the global attractor of a reaction-diffusion equation with non-smooth nonlinear term, Discrete Contin. Dyn. Syst., 34 (2014), 4155-4182. doi: 10.3934/dcds.2014.34.4155. Google Scholar

[5]

O. V. KapustyanP. O. Kasyanov and J. Valero, Regular solutions and global attractors for reaction-diffusion systems without uniqueness, Communications on Pure and Applied Analysis, 13 (2014), 1891-1906. doi: 10.3934/cpaa.2014.13.1891. Google Scholar

[6]

O. V. Kapustyan, P. O. Kasyanov and J. Valero, Structure of the uniform global attractor for general non-autonomous reaction-diffusion systems, in Continuous and distributed systems, Solid Mechanics and its Applications 211 (M. Z. Zgurovsky and V. A. Sadovnichiy eds. ), Springer International Publishing Switzerland, 2014,163-180.Google Scholar

[7]

O. V. KapustyanP. O. Kasyanov and J. Valero, Structure of the global attractor for weak solutions of a reaction-diffusion equation, Appl. Math. Inf. Sci., 9 (2015), 2257-2264. Google Scholar

[8]

O. V. Kapustyan and J. Valero, On the Kneser property for the complex Ginzburg-Landau equation and the Lotka-Volterra system with diffusion, J. Math. Anal. Appl., 357 (2009), 254-272. doi: 10.1016/j.jmaa.2009.04.010. Google Scholar

[9]

O. V. Kapustyan and J. Valero, Comparison between trajectory and global attractors for evolution systems without uniqueness of solutions, Internat. J. Bifur. Chaos, 20 (2010), 2723-2734. doi: 10.1142/S0218127410027313. Google Scholar

[10]

P. O. KasyanovL. Toscano and N. V. Zadoianchuk, Regularity of weak solutions and their attractors for a parabolic feedback control problem, Set-Valued Var. Anal., 21 (2013), 271-282. doi: 10.1007/s11228-013-0233-8. Google Scholar

[11]

J. L. Lions and E. Magenes, Problémes Aux Limites Non-homogénes et Applications Dunod, Paris, 1968.Google Scholar

[12]

V. S. Melnik and J. Valero, On attractors of multi-valued semi-flows and differential inclusions, Set-Valued Anal., 6 (1998), 83-111. doi: 10.1023/A:1008608431399. Google Scholar

[13]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations Springer, 2002.Google Scholar

[14]

J. Smoller, Shock Waves and Reaction-Diffusion Equations Springer, New-York, 1983.Google Scholar

[15]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics Springer-Verlag, New York, 1997.Google Scholar

[16]

M. I. Vishik and A. V. Fursikov, Mathematical Problems of Statistical Hydromechanics, Kluwer Academic Publishers, Dordrecht, 1988.Google Scholar

[17]

M. I. VishikS. V. Zelik and V. V. Chepyzhov, Strong trajectory attractor of dissipative reaction-diffusion system, Doklady RAN, 435 (2010), 155-159. doi: 10.1134/S1064562410060086. Google Scholar

[18]

M. Z. Zgurovsky and P. O. Kasyanov, Multivalued dynamics of solutions for autonomous operator differential equations in strongest topologies, in Continuous and distributed systems, Solid Mechanics and its Applications 211 (M. Z. Zgurovsky and V. A. Sadovnichiy eds. ), Springer International Publishing, Switzerland, 2014,149-162.Google Scholar

[1]

Vladimir V. Chepyzhov, Mark I. Vishik. Trajectory attractor for reaction-diffusion system with diffusion coefficient vanishing in time. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1493-1509. doi: 10.3934/dcds.2010.27.1493

[2]

Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631

[3]

Lili Du, Chunlai Mu, Zhaoyin Xiang. Global existence and blow-up to a reaction-diffusion system with nonlinear memory. Communications on Pure & Applied Analysis, 2005, 4 (4) : 721-733. doi: 10.3934/cpaa.2005.4.721

[4]

Shu-Xiang Huang, Fu-Cai Li, Chun-Hong Xie. Global existence and blow-up of solutions to a nonlocal reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1519-1532. doi: 10.3934/dcds.2003.9.1519

[5]

Sebastian Aniţa, William Edward Fitzgibbon, Michel Langlais. Global existence and internal stabilization for a reaction-diffusion system posed on non coincident spatial domains. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 805-822. doi: 10.3934/dcdsb.2009.11.805

[6]

Jifa Jiang, Junping Shi. Dynamics of a reaction-diffusion system of autocatalytic chemical reaction. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 245-258. doi: 10.3934/dcds.2008.21.245

[7]

Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Structure and regularity of the global attractor of a reaction-diffusion equation with non-smooth nonlinear term. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4155-4182. doi: 10.3934/dcds.2014.34.4155

[8]

B. Ambrosio, M. A. Aziz-Alaoui, V. L. E. Phan. Global attractor of complex networks of reaction-diffusion systems of Fitzhugh-Nagumo type. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3787-3797. doi: 10.3934/dcdsb.2018077

[9]

Sze-Bi Hsu, Junping Shi, Feng-Bin Wang. Further studies of a reaction-diffusion system for an unstirred chemostat with internal storage. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3169-3189. doi: 10.3934/dcdsb.2014.19.3169

[10]

Nicolas Bacaër, Cheikh Sokhna. A reaction-diffusion system modeling the spread of resistance to an antimalarial drug. Mathematical Biosciences & Engineering, 2005, 2 (2) : 227-238. doi: 10.3934/mbe.2005.2.227

[11]

W. E. Fitzgibbon, M. Langlais, J.J. Morgan. A reaction-diffusion system modeling direct and indirect transmission of diseases. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 893-910. doi: 10.3934/dcdsb.2004.4.893

[12]

José-Francisco Rodrigues, Lisa Santos. On a constrained reaction-diffusion system related to multiphase problems. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 299-319. doi: 10.3934/dcds.2009.25.299

[13]

Haomin Huang, Mingxin Wang. The reaction-diffusion system for an SIR epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2039-2050. doi: 10.3934/dcdsb.2015.20.2039

[14]

Sebastian Aniţa, Vincenzo Capasso. Stabilization of a reaction-diffusion system modelling malaria transmission. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1673-1684. doi: 10.3934/dcdsb.2012.17.1673

[15]

Michaël Bages, Patrick Martinez. Existence of pulsating waves in a monostable reaction-diffusion system in solid combustion. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 817-869. doi: 10.3934/dcdsb.2010.14.817

[16]

José-Francisco Rodrigues, João Lita da Silva. On a unilateral reaction-diffusion system and a nonlocal evolution obstacle problem. Communications on Pure & Applied Analysis, 2004, 3 (1) : 85-95. doi: 10.3934/cpaa.2004.3.85

[17]

Qiang Liu, Zhichang Guo, Chunpeng Wang. Renormalized solutions to a reaction-diffusion system applied to image denoising. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1839-1858. doi: 10.3934/dcdsb.2016025

[18]

Bo Li, Xiaoyan Zhang. Steady states of a Sel'kov-Schnakenberg reaction-diffusion system. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1009-1023. doi: 10.3934/dcdss.2017053

[19]

Hongwei Chen. Blow-up estimates of positive solutions of a reaction-diffusion system. Conference Publications, 2003, 2003 (Special) : 182-188. doi: 10.3934/proc.2003.2003.182

[20]

Bedr'Eddine Ainseba, Mostafa Bendahmane, Yuan He. Stability of conductivities in an inverse problem in the reaction-diffusion system in electrocardiology. Networks & Heterogeneous Media, 2015, 10 (2) : 369-385. doi: 10.3934/nhm.2015.10.369

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (9)
  • HTML views (1)
  • Cited by (0)

[Back to Top]