We study the existence and stability of periodic solutions of a differential equation that models the planar oscillations of a satellite in an elliptic orbit around its center of mass. The proof is based on a suitable version of Poincaré-Birkhoff theorem and the third order approximation method.
Citation: |
[1] | V. V. Beletskii, On the oscillations of satellite, Iskusst. Sputn. Zemli, 3 (1959), 1-3. |
[2] | V. V. Beletskii, The satellite Motion About Center of Mass, Nauka, Moscow, 1965. |
[3] | V. V. Beletskii and A. N. Shlyakhtin, Resonsnce Rotations of a Satellite with Interactions Between Magnetic and Gravitational Fields Preprint No. 46, Moscow: Institute of Applied Mathematics, Academy of Sciences of the USSR, 1980. |
[4] | B. S. Bardin, E. A. Chekina and A. M. Chekin, On the stability of a planar resonant rotation of a satellite in an elliptic orbit, Regul. Chaotic Dyn., 20 (2015), 63-73. doi: 10.1134/S1560354715010050. |
[5] | J. Chu and M. Zhang, Rotation number and Lyapunov stability of elliptic periodic solutions, Discrete Contin. Dyn. Syst., 21 (2008), 1071-1094. doi: 10.3934/dcds.2008.21.1071. |
[6] | J. Chu and M. Li, Twist periodic solutions of second order singular differential equations, J. Math. Anal. Appl., 355 (2009), 830-838. doi: 10.1016/j.jmaa.2009.02.033. |
[7] | J. Chu, J. Lei and M. Zhang, The stability of the equilibrium of a nonlinear planar system and application to the relativistic oscillator, J. Differential Equations, 247 (2009), 530-542. doi: 10.1016/j.jde.2008.11.013. |
[8] | J. Chu and T. Xia, The Lyapunov stability for the linear and nonlinear damped oscillator with time-periodic parameters Abstr. Appl. Anal. 2010, Art. ID 286040, 12 pp. doi: 10.1155/2010/286040. |
[9] | J. Chu, N. Fan and P. J. Torres, Periodic solutions for second order singular damped differential equations, J. Math. Anal. Appl., 388 (2012), 665-675. doi: 10.1016/j.jmaa.2011.09.061. |
[10] | J. Chu, J. Ding and Y. Jiang, Lyapunov stability of elliptic periodic solutions of nonlinear damped equations, J. Math. Anal. Appl., 396 (2012), 294-301. doi: 10.1016/j.jmaa.2012.06.024. |
[11] | J. Chu, P. J. Torres and F. Wang, Radial stability of periodic solutions of the Gylden-Meshcherskii-type problem, Discrete Contin. Dyn. Syst., 35 (2015), 1921-1932. doi: 10.3934/dcds.2015.35.1921. |
[12] | D. D. Hai, Note on a differential equation describing the periodic motion of a satellite in its elliptic orbits, Nonlinear Anal., 12 (1980), 1337-1338. doi: 10.1016/0362-546X(88)90081-8. |
[13] | D. D. Hai, Multiple solutions for a nonlinear second order differential equation, Ann. Polon. Math., 52 (1990), 161-164. |
[14] | A. Fonda and R. Toader, Periodic solutions of pendulum-like Hamiltonian systems in the plane, Adv. Nonlinear Stud., 12 (2012), 395-408. doi: 10.1515/ans-2012-0210. |
[15] | J. Franks, Generalization of Poincaré-Birkhoff theorem, Ann. of Math., 128 (1988), 139-151. doi: 10.2307/1971464. |
[16] | J. Lei, X. Li, P. Yan and M. Zhang, Twist character of the least amplitude periodic solution of the forced pendulum, SIAM J. Math. Anal., 35 (2003), 844-867. doi: 10.1137/S003614100241037X. |
[17] | J. Lei, P. J. Torres and M. Zhang, Twist character of the fourth order resonant periodic solution, J. Dynam. Differential Equations, 17 (2005), 21-50. doi: 10.1007/s10884-005-2937-4. |
[18] | A. P. Markeev, B. S. Bardin and A. Planar, Rotational motion of a satellite in an elliptic orbit, Cosmic Res., 32 (1994), 583-589. |
[19] | S. Maró, Periodic solutions of a forced relativistic pendulum via twist dynamics, Topol. Methods Nonlinear Anal., 42 (2013), 51-75. |
[20] | D. Núñez, The method of lower and upper solutions and the stability of periodic oscillations, Nonlinear Anal., 51 (2002), 1207-1222. doi: 10.1016/S0362-546X(01)00888-4. |
[21] | D. Nuñez and P. J. Torres, Periodic solutions of twist type of an earth satellite equation, Discrete Contin. Dyn. Syst., 7 (2001), 303-306. doi: 10.3934/dcds.2001.7.303. |
[22] | D. Nuñez and P. J. Torres, Stable odd solutions of some periodic equations modeling satellite motion, J. Math. Anal. Appl., 279 (2003), 700-709. doi: 10.1016/S0022-247X(03)00057-X. |
[23] | R. Ortega, Periodic solution of a Newtonian equation: Stability by the third approximation, J. Differential Equations, 128 (1996), 491-518. doi: 10.1006/jdeq.1996.0103. |
[24] | W. V. Petryshyn and Z. S. Yu, On the solvability of an equation describing the periodic motions of a satellite in its elliptic orbit, Nonlinear Anal., 9 (1985), 969-975. doi: 10.1016/0362-546X(85)90079-3. |
[25] | C. Siegel and J. Moser, Lectures on Celestial Mechanics, Springer-Verlag, Berlin, 1971. |
[26] | M. Zhang, The best bound on the rotations in the stability of periodic solutions of a Newtonian equation, J. London Math. Soc., 67 (2003), 137-148. doi: 10.1112/S0024610702003939. |
[27] | M. Zhang and W. Li, A Lyapunov-type stability criterion using $L^α$ norms, Proc. Amer. Math. Soc., 130 (2002), 3325-3333. doi: 10.1090/S0002-9939-02-06462-6. |
[28] | A. A. Zevin, On oscillations of a satellite in the plane of elliptic orbit, Kosmich. Issled., 19 (1981), 674-679. |
[29] | A. A. Zevin and M. A. Pinsky, Qualitative analysis of periodic oscillations of an earth satellite with magnetic attitude stabilization, Discrete Contin. Dyn. Syst., 6 (2000), 193-297. doi: 10.3934/dcds.2000.6.293. |
[30] | V. A. Zlatoustov and A. P. Markeev, Stability of planar oscillations of a satellite in an elliptic orbit, Celestial Mech., 7 (1973), 31-45. doi: 10.1007/BF01243507. |