In this paper, we construct an open and dense set in the space of bounded linear random dynamical systems (both discrete and continuous time) equipped with the essential sup norm such that the Lyapunov exponents depend analytically on the coefficients in this set. As a consequence, analyticity for Lyapunov exponents of bounded linear random dynamical systems is a generic property.
Citation: |
[1] |
W. Ambrose, Representation of ergodic flows, Annals of Mathematics, 42 (1941), 723-739.
doi: 10.2307/1969259.![]() ![]() ![]() |
[2] |
L. Arnold, V. M. Gundlach and L. Demetrius, Evolutionary formalism for products of positive
random matrices, The Annals of Applied Probability, 4 (1994), 859-901.
doi: 10.1214/aoap/1177004975.![]() ![]() ![]() |
[3] |
L. Arnold,
Random Dynamical Systems, Springer, 1998.
doi: 10.1007/978-3-662-12878-7.![]() ![]() ![]() |
[4] |
J. Bochi, Discontinuity of the Lyapunov exponent for non-hyperbolic cocycles, Unpublished, http://www.mat.uc.cl/~jairo.bochi/docs/discont.pdf.
![]() |
[5] |
N. D. Cong, A generic bounded linear cocycle has simple Lyapunov spectrum, Ergodic Theory and Dynamical Systems, 25 (2005), 1775-1797.
doi: 10.1017/S0143385705000337.![]() ![]() ![]() |
[6] |
N. D. Cong and T. S. Doan, On integral separation of bounded linear random differential
equations, Discrete and Continuous Dynamical Systems, Series S, 9 (2016), 995-1007.
doi: 10.3934/dcdss.2016038.![]() ![]() ![]() |
[7] |
I. P. Cornfeld, S. V. Fomin and Ya. G. Sinaĭ,
Ergodic Theory Grundlehren der Mathematischen Wissenschaften, 245. Springer-Verlag, New York, 1982.
doi: 10.1007/978-1-4615-6927-5.![]() ![]() ![]() |
[8] |
H. Crauel, Lyapunov exponents of random dynamical systems on Grassmannians, Lyapunov
Exponents (Oberwolfach, 1990), 38–50, Lecture Notes in Math. , 1486, Springer, Berlin, 1991.
doi: 10.1007/BFb0086656.![]() ![]() ![]() |
[9] |
L. Dubois, Real cone contractions and analyticity properties of the characteristic exponents, Nonlinearity, 21 (2008), 2519-2536.
doi: 10.1088/0951-7715/21/11/003.![]() ![]() ![]() |
[10] |
G. Froyland, C. González-Tokman and A. Quas, Stochastic stability of Lyapunov exponents and Oseledets splitting for semi-invertible matrix cocycles, Comm. Pure Appl. Math., 68 (2015), 2052-2081.
doi: 10.1002/cpa.21569.![]() ![]() ![]() |
[11] |
T. Kato,
Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1995.
![]() ![]() |
[12] |
O. Knill, The upper Lyapunov exponent of Sl(2, R) cocycles: Discontinuity and the problem
of positivity, Lecture Notes in Mathematics, 1486 (1990), 86-97.
doi: 10.1007/BFb0086660.![]() ![]() ![]() |
[13] |
V. I. Oseledets, A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems, Transactions of the Moscow Mathematical Society, 19 (1968), 179-210.
![]() ![]() |
[14] |
D. Ruelle, Analyticity properties of the characteristic exponents of random matrix products, Advances in Mathematics, 32 (1979), 68-80.
doi: 10.1016/0001-8708(79)90029-X.![]() ![]() ![]() |
[15] |
E. F. Whittlesey, Analytic functions in Banach spaces, Proc. Am. Math. Soc., 16 (1965), 1077-1083.
doi: 10.1090/S0002-9939-1965-0184092-2.![]() ![]() ![]() |