\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Efficient spectral sparse grid approximations for solving multi-dimensional forward backward SDEs

  • * Corresponding author

    * Corresponding author

This work was supported by the National Natural Science Foundations of China under grants 91630312,91630203,11571351,11171189 and 11571206. The last author was also supported by NCMIS

Abstract / Introduction Full Text(HTML) Figure(2) / Table(5) Related Papers Cited by
  • This is the second part of a series papers on multi-step schemes for solving coupled forward backward stochastic differential equations (FBSDEs). We extend the basic idea in our former paper [W. Zhao, Y. Fu and T. Zhou, SIAM J. Sci. Comput., 36 (2014), pp. A1731-A1751] to solve high-dimensional FBSDEs, by using the spectral sparse grid approximations. The main issue for solving high-dimensional FBSDEs is to build an efficient spatial discretization, and deal with the related high-dimensional conditional expectations and interpolations. In this work, we propose the sparse grid spatial discretization. The sparse grid Gaussian-Hermite quadrature rule is used to approximate the conditional expectations. And for the associated high-dimensional interpolations, we adopt a spectral expansion of functions in polynomial spaces with respect to the spatial variables, and use the sparse grid approximations to recover the expansion coefficients. The FFT algorithm is used to speed up the recovery procedure, and the entire algorithm admits efficient and highly accurate approximations in high dimensions. Several numerical examples are presented to demonstrate the efficiency of the proposed methods.

    Mathematics Subject Classification: 60H35, 65C20, 60H10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Sparse grid for CGL $(x_1, x_2)\in\mathcal{C}_2^6$ (Left) and sparse grid for GH $(x_1, x_2)\in\mathcal{G}_2^6$ (Right)

    Figure 2.  Dimensions v.s. the running time for Example 3 with $N=128$

    Table 1.  Main techniques used in the SSG and LTG methods for solving FBSDEs. TP: tensor product. SG: sparse grid. GH: Gaussian-Hermite

    MethodMeshesConditional expectationsApproximation & interpolation
    SSGsparse gridSG GH quadratureSG interpolation
    LTGTP uniform meshTP GH quadratureLagrangian
     | Show Table
    DownLoad: CSV

    Table 2.  Errors and convergence rates for Example 1 by SSG (Top) and LTG (Bottom)

    step numbererrorsN=8N=16N=32N=64N=128CR
    1-step$\mathcal{E}_Y$3.991E-022.050E-021.039E-025.232E-032.625E-030.982
    $\mathcal{E}_Z$5.186E-022.649E-021.339E-026.733E-033.377E-030.986
    RT2.5194.6389.52119.19938.679
    2-step$\mathcal{E}_Y$5.620E-031.456E-033.670E-049.182E-052.286E-051.987
    $\mathcal{E}_Z$6.978E-031.847E-034.813E-041.225E-043.090E-051.955
    RT6.85215.59633.40168.541143.552
    3-step$\mathcal{E}_Y$9.748E-041.342E-041.728E-052.264E-068.196E-072.632
    $\mathcal{E}_Z$3.091E-033.850E-044.757E-056.009E-068.834E-072.955
    RT6.89919.40343.83595.902197.608
    step numbererrorsN=8N=16N=32N=64N=128CR
    1-step$\mathcal{E}_Y$7.204E-013.989E-011.849E-017.321E-022.871E-021.174
    $\mathcal{E}_Z$2.670E-011.534E-017.409E-023.152E-021.332E-021.093
    RT1.0474.60924.120141.209844.974
    2-step$\mathcal{E}_Y$4.873E-011.105E-012.220E-024.165E-037.708E-042.333
    $\mathcal{E}_Z$1.999E-014.706E-021.174E-022.494E-034.159E-042.205
    RT3.86112.97060.661363.0522139.540
    3-step$\mathcal{E}_Y$2.656E-012.252E-022.295E-032.247E-042.024E-053.401
    $\mathcal{E}_Z$1.136E-019.841E-031.306E-031.417E-041.244E-053.243
    RT13.01043.490193.784968.7884929.977
     | Show Table
    DownLoad: CSV

    Table 3.  Errors and convergence rates for Example 2

    step numbererrorsN=8N=16N=32N=64N=128CR
    1-step$\mathcal{E}_Y$6.229E-033.173E-031.547E-037.695E-043.849E-041.008
    $\mathcal{E}_Z$8.693E-024.335E-022.165E-021.082E-025.411E-031.001
    RT4.2689.03617.72035.74076.049
    2-step$\mathcal{E}_Y$4.126E-051.148E-052.251E-063.986E-071.051E-072.208
    $\mathcal{E}_Z$5.470E-041.630E-044.222E-058.722E-062.061E-062.032
    RT6.98615.92634.53072.690153.092
    3-step$\mathcal{E}_Y$4.078E-058.408E-061.107E-061.370E-071.837E-082.817
    $\mathcal{E}_Z$4.438E-045.143E-057.673E-061.049E-061.514E-072.865
    RT7.98020.65048.610102.595212.189
     | Show Table
    DownLoad: CSV

    Table 4.  Errors and convergence rates for Example 3

    schemesparse gridN=8N=16N=32N=64N=128CR
    1-step$q=3$
    $\mathcal{C}_3^4$ & $\mathcal{G}_3^4$
    $\mathcal{E}_Y$5.717E-022.999E-021.557E-028.021E-034.104E-030.950
    $\mathcal{E}_Z$3.129E-021.575E-027.988E-034.057E-032.057E-030.981
    RT0.1070.2260.3890.6271.268
    2-step$q=3$
    $\mathcal{C}_3^4$ & $\mathcal{G}_3^4$
    $\mathcal{E}_Y$2.766E-037.861E-042.091E-045.396E-051.371E-051.918
    $\mathcal{E}_Z$4.833E-031.197E-033.006E-047.588E-051.916E-051.994
    RT0.1310.2350.5091.0672.187
    3-step$q=3$
    $\mathcal{C}_3^4$ & $\mathcal{G}_3^4$
    $\mathcal{E}_Y$1.244E-041.183E-051.061E-069.522E-088.587E-093.460
    $\mathcal{E}_Z$3.425E-044.375E-055.575E-067.067E-078.922E-082.976
    RT0.1730.3700.7501.4783.072
    1-step$q=4$
    $\mathcal{C}_4^5$ & $\mathcal{G}_4^5$
    $\mathcal{E}_Y$1.196E-016.208E-023.187E-021.626E-028.259E-030.965
    $\mathcal{E}_Z$3.445E-021.735E-028.772E-034.439E-032.244E-030.985
    RT1.6823.1536.17812.93426.182
    2-step$q=4$
    $\mathcal{C}_4^5$ & $\mathcal{G}_4^5$
    $\mathcal{E}_Y$9.114E-032.817E-037.851E-042.087E-045.426E-051.854
    $\mathcal{E}_Z$6.769E-031.628E-034.038E-041.012E-042.547E-052.012
    RT2.5134.4429.60620.16041.504
    3-step$q=4$
    $\mathcal{C}_4^5$ & $\mathcal{G}_4^5$
    $\mathcal{E}_Y$4.879E-047.611E-051.052E-051.378E-061.763E-072.865
    $\mathcal{E}_Z$1.176E-031.420E-041.767E-052.215E-062.786E-073.009
    RT1.9935.72213.29628.61459.671
    1-step$q=5$
    $\mathcal{C}_5^6$ & $\mathcal{G}_5^6$
    $\mathcal{E}_Y$2.269E-011.177E-016.023E-023.061E-021.549E-020.969
    $\mathcal{E}_Z$4.345E-022.196E-021.110E-025.608E-032.829E-030.985
    RT23.19647.56699.318203.587411.991
    2-step$q=5$
    $\mathcal{C}_5^6$ & $\mathcal{G}_5^6$
    $\mathcal{E}_Y$2.941E-028.713E-032.376E-036.223E-041.600E-041.885
    $\mathcal{E}_Z$9.182E-032.216E-035.534E-041.393E-043.510E-052.005
    RT33.61080.876177.315372.765766.094
    3-step$q=5$
    $\mathcal{C}_5^6$ & $\mathcal{G}_5^6$
    $\mathcal{E}_Y$2.549E-034.157E-046.185E-058.531E-061.127E-062.789
    $\mathcal{E}_Z$2.364E-032.687E-043.254E-054.031E-065.037E-073.045
    RT36.049105.507245.986530.8531106.870
    1-step$q=6$
    $\mathcal{C}_6^7$ & $\mathcal{G}_6^7$
    $\mathcal{E}_Y$4.068E-012.117E-011.084E-015.500E-022.779E-020.969
    $\mathcal{E}_Z$5.899E-022.996E-021.516E-027.652E-033.855E-030.984
    RT368.274792.7581640.7743346.5296758.066
    2-step$q=6$
    $\mathcal{C}_6^7$ & $\mathcal{G}_6^7$
    $\mathcal{E}_Y$7.236E-022.130E-025.783E-031.510E-033.869E-041.891
    $\mathcal{E}_Z$1.307E-023.277E-038.382E-042.134E-045.405E-051.978
    RT1112.5242813.6416114.39012814.47326454.702
    3-step$q=6$
    $\mathcal{C}_6^7$ & $\mathcal{G}_6^7$
    $\mathcal{E}_Y$1.037E-021.742E-032.528E-043.407E-054.433E-062.806
    $\mathcal{E}_Z$3.924E-034.391E-045.339E-056.647E-068.328E-073.045
    RT594.0601767.9384110.8768853.13118481.311
     | Show Table
    DownLoad: CSV

    Table 5.  Errors and convergence rates for Example 4

    schemesparse girdN=8N=16N=32N=64N=128CR
    1-step$q=2$
    $\mathcal{C}_2^3$ & $\mathcal{G}_2^3$
    $\mathcal{E}_Y$4.246E-031.925E-039.181E-044.508E-042.243E-041.058
    $\mathcal{E}_Z$1.149E-024.898E-032.098E-039.057E-043.948E-041.216
    RT0.0300.0450.0830.1600.267
    2-step$q=2$
    $\mathcal{C}_2^3$ & $\mathcal{G}_2^3$
    $\mathcal{E}_Y$4.093E-048.289E-051.646E-053.207E-066.101E-072.347
    $\mathcal{E}_Z$5.429E-031.395E-033.568E-049.099E-052.315E-051.968
    RT0.0320.0590.0900.1710.327
    3-step$q=2$
    $\mathcal{C}_2^3$ & $\mathcal{G}_2^3$
    $\mathcal{E}_Y$2.459E-052.651E-062.695E-072.658E-082.538E-093.312
    $\mathcal{E}_Z$5.266E-055.713E-066.099E-076.276E-086.215E-093.261
    RT0.0330.0750.1320.2760.430
    1-step$q=3$
    $\mathcal{C}_3^4$ & $\mathcal{G}_3^4$
    $\mathcal{E}_Y$2.463E-031.068E-034.812E-042.229E-041.072E-041.130
    $\mathcal{E}_Z$3.243E-031.363E-035.990E-042.630E-041.154E-041.200
    RT0.2950.4220.7621.4202.690
    2-step$q=3$
    $\mathcal{C}_3^4$ & $\mathcal{G}_3^4$
    $\mathcal{E}_Y$2.044E-047.910E-051.676E-053.397E-066.738E-072.103
    $\mathcal{E}_Z$1.073E-032.444E-046.285E-051.632E-054.227E-061.988
    RT0.3520.7171.3852.6104.946
    3-step$q=3$
    $\mathcal{C}_3^4$ & $\mathcal{G}_3^4$
    $\mathcal{E}_Y$8.103E-061.743E-061.890E-071.942E-081.933E-093.055
    $\mathcal{E}_Z$7.540E-061.577E-061.795E-071.933E-081.995E-093.012
    RT0.3641.2231.9363.7437.150
    1-step$q=4$
    $\mathcal{C}_4^5$ & $\mathcal{G}_4^5$
    $\mathcal{E}_Y$1.663E-037.351E-043.068E-041.370E-046.294E-051.187
    $\mathcal{E}_Z$1.360E-035.763E-042.374E-041.068E-044.838E-051.206
    RT3.9168.05015.73829.98755.418
    2-step$q=4$
    $\mathcal{C}_4^5$ & $\mathcal{G}_4^5$
    $\mathcal{E}_Y$6.776E-054.165E-051.569E-053.408E-066.925E-071.684
    $\mathcal{E}_Z$3.665E-048.033E-051.727E-054.479E-061.191E-062.070
    RT5.06413.27928.97456.345105.155
    3-step$q=4$
    $\mathcal{C}_4^5$ & $\mathcal{G}_4^5$
    $\mathcal{E}_Y$4.932E-061.065E-061.111E-071.115E-081.087E-093.087
    $\mathcal{E}_Z$2.474E-065.495E-076.062E-086.348E-096.390E-103.027
    RT34.015117.047250.853483.481926.454
    1-step$q=5$
    $\mathcal{C}_5^6$ & $\mathcal{G}_5^6$
    $\mathcal{E}_Y$1.167E-035.489E-042.341E-049.343E-054.184E-051.216
    $\mathcal{E}_Z$6.751E-043.055E-041.268E-045.183E-052.408E-051.218
    RT58.937134.345289.234570.5871049.247
    2-step$q=5$
    $\mathcal{C}_5^6$ & $\mathcal{G}_5^6$
    $\mathcal{E}_Y$6.572E-054.173E-051.246E-052.548E-065.087E-071.806
    $\mathcal{E}_Z$1.464E-042.885E-056.466E-061.763E-064.792E-072.054
    RT736.4052004.1854124.2867776.64514561.700
    3-step$q=5$
    $\mathcal{C}_5^6$ & $\mathcal{G}_5^6$
    $\mathcal{E}_Y$1.649E-066.334E-079.009E-089.209E-099.147E-102.774
    $\mathcal{E}_Z$5.318E-072.072E-073.079E-083.274E-093.372E-102.723
    RT709.5872599.7835916.66011366.63321380.402
     | Show Table
    DownLoad: CSV
  •   V. Barthelmann , E. Novak  and  K. Ritter , High dimensional polynomial interpolation on sparse grids, Adv. Comput. Math., 12 (2000) , 273-288.  doi: 10.1023/A:1018977404843.
      C. Bender  and  J. Zhang , Time discretization and Markovian iteration for coupled FBSDEs, Ann. Appl. Probab., 18 (2008) , 143-177.  doi: 10.1214/07-AAP448.
      J. M. Bismut , Conjugate convex functions in optimal stochastic control, J. Math. Anal. Appl., 44 (1973) , 384-404.  doi: 10.1016/0022-247X(73)90066-8.
      B. Bouchard  and  N. Touzi , Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations, Stoch. Proc. Appl., 111 (2004) , 175-206.  doi: 10.1016/j.spa.2004.01.001.
      J. F. Chassagneux  and  D. Crisan , Runge-Kutta schemes for backward stochastic differential equations, Ann. Appl. Probab., 24 (2014) , 679-720.  doi: 10.1214/13-AAP933.
      P. Cheridito , H. M. Soner , N. Touzi  and  N. Victoir , Second-order backward stochastic differential equations and fully nonlinear parabolic PDEs, Commun. Pur. Appl. Math., 60 (2007) , 1081-1110.  doi: 10.1002/cpa.20168.
      D. Crisan  and  K. Manolarakis , Solving backward stochastic differential equations using the cubature method: application to nonlinear pricing, SIAM J. Financial Math., 3 (2012) , 534-571.  doi: 10.1137/090765766.
      J. Douglas , J. Ma  and  P. Protter , Numerical methods for forward-backward stochastic differential equations, Ann. Appl. Probab., 6 (1996) , 940-968.  doi: 10.1214/aoap/1034968235.
      A. Fahim , N. Touzi  and  X. Warin , A probabilistic numerical method for fully nonlinear parabolic PDEs, Ann. Appl. Probab., 21 (2011) , 1322-1364.  doi: 10.1214/10-AAP723.
      Y. Fu , W. Zhao  and  T. Zhou , Multistep schemes for forward backward stochastic differential equations with jumps, J. Sci. Comput., 69 (2016) , 651-672.  doi: 10.1007/s10915-016-0212-y.
      W. Guo , J. Zhang  and  J. Zhuo , A monotone scheme for high-dimensional fully nonlinear PDEs, Ann. Appl. Probab., 25 (2015) , 1540-1580.  doi: 10.1214/14-AAP1030.
      N. El Karoui , C. Kapoudjian , E. Pardoux , S. Peng  and  M. C. Quenez , Reflected solutions of backward SDE's and related obstacle problems for PDE's, Ann. Probab., 25 (1997) , 702-737.  doi: 10.1214/aop/1024404416.
      N. El Karoui , S. Peng  and  M. C. Quenez , Backward stochastic differential equations in finance, Math. Financ., 7 (1997) , 1-71.  doi: 10.1111/1467-9965.00022.
      T. Kong , W. Zhao  and  T. Zhou , High order probabilistic numerical schemes for fully nonlinear parabolic PDEs, Commun. Comput. Phys., 18 (2015) , 1482-1503.  doi: 10.4208/cicp.240515.280815a.
      T. Kong , W. Zhao  and  T. Zhou , High order numerical schemes for second order FBSDEs with applications to stochastic optimal control, Commun. Comput. Phys., 21 (2017) , 808-834.  doi: 10.4208/cicp.OA-2016-0056.
      J. P. Lemor , E. Gobet  and  X. Warin , A regression-based Monte Carlo method to solve backward stochastic differential equations, Ann. Appl. Probab., 15 (2005) , 2172-2202.  doi: 10.1214/105051605000000412.
      Y. Li , J. Yang  and  W. Zhao , Convergence error estimates of the {C}rank-{N}icolson scheme for solving decoupled {FBSDE}s, Sci. China Math., 60 (2017) , 923-948.  doi: 10.1007/s11425-016-0178-8.
      J. Ma , P. Protter  and  J. Yong , Solving forward-backward stochastic differential equations explicitly -a four step scheme, Probab. Theory Related Fields, 98 (1994) , 339-359.  doi: 10.1007/BF01192258.
      J. Ma , J. Shen  and  Y. Zhao , On numerical approximations of forward-backward stochastic differential equations, SIAM J. Numer. Anal., 46 (2008) , 2636-2661.  doi: 10.1137/06067393X.
      G. N. Milstein  and  M. V. Tretyakov , Numerical algorithms for forward-backward stochastic differential equations, SIAM J. Sci. Comput., 28 (2006) , 561-582.  doi: 10.1137/040614426.
      F. Nobile , R. Tempone  and  C. Webster , A sparse grid stochastic collocation method for partial differential equations with random input data, SIAM J. Numer. Anal., 46 (2008) , 2309-2345.  doi: 10.1137/060663660.
      A. Narayan  and  T. Zhou , Stochastic collocation on unstructured multivariate meshes, Commun. Comput. Phys., 18 (2015) , 1-36.  doi: 10.4208/cicp.020215.070515a.
      E. Pardoux  and  S. Peng , Adapted solution of a backward stochastic differential equation, Syst. Control Lett., 14 (1990) , 55-61.  doi: 10.1016/0167-6911(90)90082-6.
      E. Pardoux  and  S. Tang , Forward-backward stochastic differential equations and quasilinear parabolic PDEs, Probab. Theory Related Fields, 114 (1999) , 123-150.  doi: 10.1007/s004409970001.
      S. Peng , Probabilistic interpretation for systems of quasilinear parabolic partial differential equations, Stoch. Stoch. Repts., 37 (1991) , 61-74.  doi: 10.1080/17442509108833727.
      M. J. Ruijter  and  C. W. Oosterlee , Fourier-cosine method for an efficient computation of solutions to BSDEs, SIAM J. Sci. Comput., 37 (2015) , A859-A889.  doi: 10.1137/130913183.
      J. Shen  and  H. Yu , Efficient spectral sparse grid methods and applications to high dimensional elliptic problems, SIAM J. Sci. Comput., 32 (2010) , 3228-3250.  doi: 10.1137/100787842.
      J. Shen  and  H. Yu , Efficient spectral sparse grid methods and applications to high dimensional elliptic problems Ⅱ unbounded domains, SIAM J. Sci. Comput., 34 (2012) , A1141-A1164.  doi: 10.1137/110834950.
      S. A. Smolyak , Quadrature and interpolation formulas for tensor products of certain classes of functions, Dokl. Akad. Nauk SSSR, 4 (1963) , 240-243. 
      H. M. Soner , N. Touzi  and  J. Zhang , Wellposedness of second order backward SDEs, Probab. Theory Related Fields,, 153 (2012) , 149-190.  doi: 10.1007/s00440-011-0342-y.
      T. Tang , W. Zhao  and  T. Zhou , Deferred correction methods for forward backward stochastic differential equations, Numer. Math. Theory Methods Appl., 10 (2017) , 222-242.  doi: 10.4208/nmtma.2017.s02.
      D. Xiu  and  J. S. Hesthaven , High-order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput., 27 (2005) , 1118-1139.  doi: 10.1137/040615201.
      G. Zhang , M. Gunzburger  and  W. Zhao , A sparse-grid method for multi-dimensional backward stochastic differential equations, J. Comput. Math., 31 (2013) , 221-248.  doi: 10.4208/jcm.1212-m4014.
      J. Zhang , A numerical scheme for BSDEs, Ann. Appl. Probab., 14 (2004) , 459-488.  doi: 10.1214/aoap/1075828058.
      W. Zhao , L. Chen  and  S. Peng , A new kind of accurate numerical method for backward stochastic differential equations, SIAM J. Sci. Comput., 28 (2006) , 1563-1581.  doi: 10.1137/05063341X.
      W. Zhao , Y. Fu  and  T. Zhou , New kinds of high-order multistep schemes for coupled forward backward stochastic differential equations, SIAM J. Sci. Comput., 36 (2014) , A1731-A1751.  doi: 10.1137/130941274.
      W. Zhao , Y. Li  and  G. Zhang , A generalized θ-scheme for solving backward stochastic differential equations, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012) , 1585-1603.  doi: 10.3934/dcdsb.2012.17.1585.
      W. Zhao , J. Wang  and  S. Peng , Error estimates of the θ-scheme for backward stochastic differential equations, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009) , 905-924.  doi: 10.3934/dcdsb.2009.12.905.
      W. Zhao , G. Zhang  and  L. Ju , A stable multistep scheme for solving backward stochastic differential equations, SIAM J. Numer. Anal., 48 (2010) , 1369-1394.  doi: 10.1137/09076979X.
      W. Zhao , W. Zhang  and  L. Ju , A numerical method and its error estimates for the decoupled forward-backward stochastic differential equations, Commun. Comput. Phys., 15 (2014) , 618-646.  doi: 10.4208/cicp.280113.190813a.
      W. Zhao , W. Zhang  and  L. Ju , A multistep scheme for decoupled forward-backward stochastic differential equations, Numer. Math. Theory Methods Appl., 9 (2016) , 262-288.  doi: 10.4208/nmtma.2016.m1421.
  • 加载中

Figures(2)

Tables(5)

SHARE

Article Metrics

HTML views(2061) PDF downloads(368) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return