September 2018, 23(7): 2679-2694. doi: 10.3934/dcdsb.2017188

Effect of perturbation in the numerical solution of fractional differential equations

1. 

Dipartimento di Matematica Università degli Studi di Bari Via E. Orabona 4,70125 Bari, Italy

2. 

Dipartimento di Matematica e Applicazioni Università degli Studi di Napoli "Federico Ⅱ" Via Cintia, I-80126 Napoli, Italy

3. 

C.N.R. National Research Council of Italy Institute for Computational Application "Mauro Picone" Via P. Castellino, 111 -80131 Napoli -Italy

* Corresponding author: E. Messina

Received  October 2016 Revised  May 2017 Published  July 2017

Fund Project: This work is supported under the INdAM-GNCS project 2016 "Metodi numerici per operatori non-locali nella simulazione di fenomeni complessi"

The equations describing engineering and real-life models are usually derived in an approximated way. Thus, in most cases it is necessary to deal with equations containing some kind of perturbation. In this paper we consider fractional differential equations and study the effects on the continuous and numerical solution, of perturbations on the given function, over long-time intervals. Some bounds on the global error are also determined.

Citation: Roberto Garrappa, Eleonora Messina, Antonia Vecchio. Effect of perturbation in the numerical solution of fractional differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2679-2694. doi: 10.3934/dcdsb.2017188
References:
[1]

T. M. Atanacković, S. Pilipović, B. Stanković and D. Zorica, Fractional Calculus with Applications in Mechanics Mechanical Engineering and Solid Mechanics Series. ISTE, London; John Wiley & Sons, Inc. , Hoboken, NJ, 2014. Wave propagation, impact and variational principles.

[2]

L. C. Becker, Resolvents and solutions of weakly singular linear Volterra integral equations, Nonlinear Anal., 74 (2011), 1892-1912. doi: 10.1016/j.na.2010.10.060.

[3]

H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations volume 15 of Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, 2004. doi: 10.1017/CBO9780511543234.

[4]

H. Brunner and P. J. van der Houwen, The Numerical Solution of Volterra Equations volume 3 of CWI Monographs, North-Holland Publishing Co. , Amsterdam, 1986.

[5]

E. Capelas de Oliveira and J. A. T. Machado, A review of definitions for fractional derivatives and integral Math. Probl. Eng. , 2014 (2014), Art. ID 238459, 6 pp. doi: 10.1155/2014/238459.

[6]

R. Caponetto, G. Dongola, L. Fortuna and I. Petráš, Fractional Order Systems: Modeling and Control Applications volume 72 of Series on Nonlinear Science, Series A, World Scientific, Singapore, 2010.

[7]

M. ConcezziR. Garra and R. Spigler, Fractional relaxation and fractional oscillation models involving Erdélyi-Kober integrals, Fract. Calc. Appl. Anal., 18 (2015), 1212-1231. doi: 10.1515/fca-2015-0070.

[8]

F. R. de Hoog and R. S. Anderssen, Kernel perturbations for a class of second-kind convolution Volterra equations with non-negative kernels, Appl. Math. Lett., 25 (2012), 1222-1225. doi: 10.1016/j.aml.2012.02.058.

[9]

K. Diethelm, The Analysis of Fractional Differential Equations Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-14574-2.

[10]

K. DiethelmN. J. Ford and A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam., 29 (2002), 3-22. doi: 10.1023/A:1016592219341.

[11]

K. DiethelmN. J. Ford and A. D. Freed, Detailed error analysis for a fractional Adams method, Numer. Algorithms, 36 (2004), 31-52. doi: 10.1023/B:NUMA.0000027736.85078.be.

[12]

J. Dixon, On the order of the error in discretization methods for weakly singular second kind Volterra integral equations with nonsmooth solutions, BIT, 25 (1985), 624-634. doi: 10.1007/BF01936141.

[13]

R. GarraR. GorenfloF. Polito and Ž. Tomovski, Hilfer-Prabhakar derivatives and some applications, Appl. Math. Comput., 242 (2014), 576-589. doi: 10.1016/j.amc.2014.05.129.

[14]

R. Garrappa, Trapezoidal methods for fractional differential equations: Theoretical and computational aspects, Math. Comput. Simulation, 110 (2015), 96-112. doi: 10.1016/j.matcom.2013.09.012.

[15]

R. Garrappa, Grünwald-Letnikov operators for fractional relaxation in Havriliak-Negami models, Commun. Nonlinear Sci. Numer. Simul., 38 (2016), 178-191. doi: 10.1016/j.cnsns.2016.02.015.

[16]

R. Gorenflo, A. A. Kilbas, F. Mainardi and S. V. Rogosin, Mittag–Leffler Functions, Related Topics and Applications, Springer Monographs in Mathematics. Springer, New York, 2014.

[17]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations volume 204 of {North-Holland Mathematics Studies}, Elsevier Science B. V. , Amsterdam, 2006.

[18]

F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity Imperial College Press, London, 2010. An introduction to mathematical models. doi: 10.1142/9781848163300.

[19]

G. Pagnini, Erdélyi-Kober fractional diffusion, Fract. Calc. Appl. Anal., 15 (2012), 117-127. doi: 10.2478/s13540-012-0008-1.

[20]

I. Podlubny, Fractional Differential Equations volume 198 of Mathematics in Science and Engineering, Academic Press, Inc. , San Diego, CA, 1999. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications.

[21]

V. E. Tarasov, Fractional Dynamics Nonlinear Physical Science. Springer, Heidelberg; Higher Education Press, Beijing, 2010. Applications of fractional calculus to dynamics of particles, fields and media. doi: 10.1007/978-3-642-14003-7.

[22]

G. Teschl, Ordinary Differential Equations and Dynamical Systems volume 140 of Graduate Studies in Mathematics, American Mathematical Society, Providence, 2012. doi: 10.1090/gsm/140.

[23]

V. V. Uchaikin, Fractional Derivatives for Physicists and Engineers, Volume Ⅱ Nonlinear Physical Science. Higher Education Press, Beijing; Springer, Heidelberg, 2013. Applications. doi: 10.1007/978-3-642-33911-0.

[24]

A. Young, Approximate product-integration, Proc. Roy. Soc. London Ser. A., 224 (1954), 552-561. doi: 10.1098/rspa.1954.0179.

show all references

References:
[1]

T. M. Atanacković, S. Pilipović, B. Stanković and D. Zorica, Fractional Calculus with Applications in Mechanics Mechanical Engineering and Solid Mechanics Series. ISTE, London; John Wiley & Sons, Inc. , Hoboken, NJ, 2014. Wave propagation, impact and variational principles.

[2]

L. C. Becker, Resolvents and solutions of weakly singular linear Volterra integral equations, Nonlinear Anal., 74 (2011), 1892-1912. doi: 10.1016/j.na.2010.10.060.

[3]

H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations volume 15 of Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, 2004. doi: 10.1017/CBO9780511543234.

[4]

H. Brunner and P. J. van der Houwen, The Numerical Solution of Volterra Equations volume 3 of CWI Monographs, North-Holland Publishing Co. , Amsterdam, 1986.

[5]

E. Capelas de Oliveira and J. A. T. Machado, A review of definitions for fractional derivatives and integral Math. Probl. Eng. , 2014 (2014), Art. ID 238459, 6 pp. doi: 10.1155/2014/238459.

[6]

R. Caponetto, G. Dongola, L. Fortuna and I. Petráš, Fractional Order Systems: Modeling and Control Applications volume 72 of Series on Nonlinear Science, Series A, World Scientific, Singapore, 2010.

[7]

M. ConcezziR. Garra and R. Spigler, Fractional relaxation and fractional oscillation models involving Erdélyi-Kober integrals, Fract. Calc. Appl. Anal., 18 (2015), 1212-1231. doi: 10.1515/fca-2015-0070.

[8]

F. R. de Hoog and R. S. Anderssen, Kernel perturbations for a class of second-kind convolution Volterra equations with non-negative kernels, Appl. Math. Lett., 25 (2012), 1222-1225. doi: 10.1016/j.aml.2012.02.058.

[9]

K. Diethelm, The Analysis of Fractional Differential Equations Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-14574-2.

[10]

K. DiethelmN. J. Ford and A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam., 29 (2002), 3-22. doi: 10.1023/A:1016592219341.

[11]

K. DiethelmN. J. Ford and A. D. Freed, Detailed error analysis for a fractional Adams method, Numer. Algorithms, 36 (2004), 31-52. doi: 10.1023/B:NUMA.0000027736.85078.be.

[12]

J. Dixon, On the order of the error in discretization methods for weakly singular second kind Volterra integral equations with nonsmooth solutions, BIT, 25 (1985), 624-634. doi: 10.1007/BF01936141.

[13]

R. GarraR. GorenfloF. Polito and Ž. Tomovski, Hilfer-Prabhakar derivatives and some applications, Appl. Math. Comput., 242 (2014), 576-589. doi: 10.1016/j.amc.2014.05.129.

[14]

R. Garrappa, Trapezoidal methods for fractional differential equations: Theoretical and computational aspects, Math. Comput. Simulation, 110 (2015), 96-112. doi: 10.1016/j.matcom.2013.09.012.

[15]

R. Garrappa, Grünwald-Letnikov operators for fractional relaxation in Havriliak-Negami models, Commun. Nonlinear Sci. Numer. Simul., 38 (2016), 178-191. doi: 10.1016/j.cnsns.2016.02.015.

[16]

R. Gorenflo, A. A. Kilbas, F. Mainardi and S. V. Rogosin, Mittag–Leffler Functions, Related Topics and Applications, Springer Monographs in Mathematics. Springer, New York, 2014.

[17]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations volume 204 of {North-Holland Mathematics Studies}, Elsevier Science B. V. , Amsterdam, 2006.

[18]

F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity Imperial College Press, London, 2010. An introduction to mathematical models. doi: 10.1142/9781848163300.

[19]

G. Pagnini, Erdélyi-Kober fractional diffusion, Fract. Calc. Appl. Anal., 15 (2012), 117-127. doi: 10.2478/s13540-012-0008-1.

[20]

I. Podlubny, Fractional Differential Equations volume 198 of Mathematics in Science and Engineering, Academic Press, Inc. , San Diego, CA, 1999. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications.

[21]

V. E. Tarasov, Fractional Dynamics Nonlinear Physical Science. Springer, Heidelberg; Higher Education Press, Beijing, 2010. Applications of fractional calculus to dynamics of particles, fields and media. doi: 10.1007/978-3-642-14003-7.

[22]

G. Teschl, Ordinary Differential Equations and Dynamical Systems volume 140 of Graduate Studies in Mathematics, American Mathematical Society, Providence, 2012. doi: 10.1090/gsm/140.

[23]

V. V. Uchaikin, Fractional Derivatives for Physicists and Engineers, Volume Ⅱ Nonlinear Physical Science. Higher Education Press, Beijing; Springer, Heidelberg, 2013. Applications. doi: 10.1007/978-3-642-33911-0.

[24]

A. Young, Approximate product-integration, Proc. Roy. Soc. London Ser. A., 224 (1954), 552-561. doi: 10.1098/rspa.1954.0179.

Figure 1.  Plot of $t^{\alpha} E_{1, \alpha+1}(-\lambda t)$ when $\lambda=1$ (left plot) and $\lambda=10$ (right plot)
Figure 2.  Values of $\eta$ as function of $\lambda$ in logarithmic scale
Figure 3.  Solution of the problem test and bound (6) for $\alpha=0.8$
Figure 4.  Comparison of the difference $\delta y(t)$ between the exact and perturbed solutions and the bound (9)
Table 1.  Relationship between global and truncation errors with respect to Theorem 4.2 for $\alpha=0.4$ (here $\eta\approx0.320$, $K=1.0$, $A\approx1.578$)
$ h $$ \eta + h^{\alpha}A $$ \displaystyle\sup_{n=0, N}|e_n| $$ \displaystyle\frac{\sup_{n=0, N} |T_n(h)|}{1 - (\eta + h^{\alpha}A)} $
$ 2^{-4} $$ 0.840 $$ 2.5692(-2) $$ 1.2938(-1) $
$ 2^{-5} $$ 0.714 $$ 1.3885(-2) $$ 4.0188(-2) $
$ 2^{-6} $$ 0.618 $$ 7.4352(-3) $$ 1.6738(-2) $
$ 2^{-7} $$ 0.546 $$ 4.0198(-3) $$ 7.8711(-3) $
$ 2^{-8} $$ 0.491 $$ 2.1891(-3) $$ 3.9330(-3) $
$ 2^{-9} $$ 0.450 $$ 1.1840(-3) $$ 2.0099(-3) $
$ 2^{-10} $$ 0.418 $$ 6.1270(-4) $$ 1.0002(-3) $
$ h $$ \eta + h^{\alpha}A $$ \displaystyle\sup_{n=0, N}|e_n| $$ \displaystyle\frac{\sup_{n=0, N} |T_n(h)|}{1 - (\eta + h^{\alpha}A)} $
$ 2^{-4} $$ 0.840 $$ 2.5692(-2) $$ 1.2938(-1) $
$ 2^{-5} $$ 0.714 $$ 1.3885(-2) $$ 4.0188(-2) $
$ 2^{-6} $$ 0.618 $$ 7.4352(-3) $$ 1.6738(-2) $
$ 2^{-7} $$ 0.546 $$ 4.0198(-3) $$ 7.8711(-3) $
$ 2^{-8} $$ 0.491 $$ 2.1891(-3) $$ 3.9330(-3) $
$ 2^{-9} $$ 0.450 $$ 1.1840(-3) $$ 2.0099(-3) $
$ 2^{-10} $$ 0.418 $$ 6.1270(-4) $$ 1.0002(-3) $
Table 2.  Relationship between global and truncation errors with respect to Theorem 4.2 for $\alpha=0.6$ (here $\eta\approx0.240$, $K=1.0$, $A\approx1.791$)
$ h $$ \eta + h^{\alpha}A $$ \displaystyle\sup_{n=0, N}|e_n| $$ \displaystyle\frac{\sup_{n=0, N} |T_n(h)|}{1 - (\eta + h^{\alpha}A)} $
$ 2^{-3} $$ 0.755 $$ 8.5380(-3) $$ 3.1044(-2) $
$ 2^{-4} $$ 0.580 $$ 4.5485(-3) $$ 9.7699(-3) $
$ 2^{-5} $$ 0.464 $$ 2.0622(-3) $$ 3.5605(-3) $
$ 2^{-6} $$ 0.388 $$ 8.9133(-4) $$ 1.3787(-3) $
$ 2^{-7} $$ 0.338 $$ 3.8127(-4) $$ 5.5464(-4) $
$ 2^{-8} $$ 0.305 $$ 1.6256(-4) $$ 2.2801(-4) $
$ 2^{-9} $$ 0.283 $$ 6.8446(-5) $$ 9.3858(-5) $
$ 2^{-10} $$ 0.268 $$ 2.7444(-5) $$ 3.7099(-5) $
$ h $$ \eta + h^{\alpha}A $$ \displaystyle\sup_{n=0, N}|e_n| $$ \displaystyle\frac{\sup_{n=0, N} |T_n(h)|}{1 - (\eta + h^{\alpha}A)} $
$ 2^{-3} $$ 0.755 $$ 8.5380(-3) $$ 3.1044(-2) $
$ 2^{-4} $$ 0.580 $$ 4.5485(-3) $$ 9.7699(-3) $
$ 2^{-5} $$ 0.464 $$ 2.0622(-3) $$ 3.5605(-3) $
$ 2^{-6} $$ 0.388 $$ 8.9133(-4) $$ 1.3787(-3) $
$ 2^{-7} $$ 0.338 $$ 3.8127(-4) $$ 5.5464(-4) $
$ 2^{-8} $$ 0.305 $$ 1.6256(-4) $$ 2.2801(-4) $
$ 2^{-9} $$ 0.283 $$ 6.8446(-5) $$ 9.3858(-5) $
$ 2^{-10} $$ 0.268 $$ 2.7444(-5) $$ 3.7099(-5) $
Table 3.  Relationship between global and truncation errors with respect to Theorem 4.2 for $\alpha=0.8$ (here $\eta\approx0.203$, $K=1.0$, $A\approx1.933$)
$ h $$ \eta + h^{\alpha}A $$ \displaystyle\sup_{n=0, N}|e_n| $$ \displaystyle\frac{\sup_{n=0, N} |T_n(h)|}{1 - (\eta + h^{\alpha}A)} $
$ 2^{-2} $$ 0.840 $$ 1.6121(-2) $$ 9.4144(-2) $
$ 2^{-3} $$ 0.569 $$ 3.6570(-3) $$ 7.9159(-3) $
$ 2^{-4} $$ 0.413 $$ 7.7545(-4) $$ 1.2719(-3) $
$ 2^{-5} $$ 0.324 $$ 1.7330(-4) $$ 2.4809(-4) $
$ 2^{-6} $$ 0.272 $$ 6.8838(-5) $$ 9.2726(-5) $
$ 2^{-7} $$ 0.243 $$ 2.4179(-5) $$ 3.1554(-5) $
$ 2^{-8} $$ 0.226 $$ 8.1096(-6) $$ 1.0403(-5) $
$ 2^{-9} $$ 0.216 $$ 2.6392(-6) $$ 3.3532(-6) $
$ 2^{-10} $$ 0.210 $$ 8.1173(-7) $$ 1.0258(-6) $
$ h $$ \eta + h^{\alpha}A $$ \displaystyle\sup_{n=0, N}|e_n| $$ \displaystyle\frac{\sup_{n=0, N} |T_n(h)|}{1 - (\eta + h^{\alpha}A)} $
$ 2^{-2} $$ 0.840 $$ 1.6121(-2) $$ 9.4144(-2) $
$ 2^{-3} $$ 0.569 $$ 3.6570(-3) $$ 7.9159(-3) $
$ 2^{-4} $$ 0.413 $$ 7.7545(-4) $$ 1.2719(-3) $
$ 2^{-5} $$ 0.324 $$ 1.7330(-4) $$ 2.4809(-4) $
$ 2^{-6} $$ 0.272 $$ 6.8838(-5) $$ 9.2726(-5) $
$ 2^{-7} $$ 0.243 $$ 2.4179(-5) $$ 3.1554(-5) $
$ 2^{-8} $$ 0.226 $$ 8.1096(-6) $$ 1.0403(-5) $
$ 2^{-9} $$ 0.216 $$ 2.6392(-6) $$ 3.3532(-6) $
$ 2^{-10} $$ 0.210 $$ 8.1173(-7) $$ 1.0258(-6) $
Table 4.  Perturbed problem: relationship between global error and bounds from Theorem 4.5 for $\alpha=0.4$ (here $\tilde{\eta}\approx0.318$, $\tilde{K}=1.0$, $\tilde{A}\approx1.578$)
$h$ $\tilde{\eta} + h^{\alpha}\tilde{A}$ $\displaystyle\sup_{n=0, N}|\tilde{e}_n|$ $\textrm{Bound (23)}$
$2^{-4}$ 0.8389.8267(-2)2.5169(-1)
$2^{-5}$ 0.7129.4799(-2)1.6371(-1)
$2^{-6}$ 0.6179.3258(-2)1.4043(-1)
$2^{-7}$ 0.5449.2595(-2)1.3162(-1)
$2^{-8}$ 0.4899.2311(-2)1.2770(-1)
$2^{-9}$ 0.4489.2198(-2)1.2578(-1)
$2^{-10}$ 0.4169.2154(-2)1.2477(-1)
$h$ $\tilde{\eta} + h^{\alpha}\tilde{A}$ $\displaystyle\sup_{n=0, N}|\tilde{e}_n|$ $\textrm{Bound (23)}$
$2^{-4}$ 0.8389.8267(-2)2.5169(-1)
$2^{-5}$ 0.7129.4799(-2)1.6371(-1)
$2^{-6}$ 0.6179.3258(-2)1.4043(-1)
$2^{-7}$ 0.5449.2595(-2)1.3162(-1)
$2^{-8}$ 0.4899.2311(-2)1.2770(-1)
$2^{-9}$ 0.4489.2198(-2)1.2578(-1)
$2^{-10}$ 0.4169.2154(-2)1.2477(-1)
Table 5.  Perturbed problem: relationship between global error and bounds from Theorem 4.5 for $\alpha=0.6$ (here $\tilde{\eta}\approx0.238$, $\tilde{K}=1.0$, $\tilde{A}\approx1.791$)
$h$ $\tilde{\eta} + h^{\alpha}\tilde{A}$ $\displaystyle\sup_{n=0, N}|\tilde{e}_n| $ $\textrm{Bound (23)}$
$ 2^{-3}$ 0.7536.1846(-2)1.1423(-1)
$2^{-4}$ 0.5786.3482(-2)9.3146(-2)
$2^{-5}$ 0.4626.3552(-2)8.6966(-2)
$2^{-6}$ 0.3866.3352(-2)8.4792(-2)
$2^{-7}$ 0.3366.3249(-2)8.3971(-2)
$2^{-8}$ 0.3036.3206(-2)8.3645(-2)
$2^{-9}$ 0.2816.3189(-2)8.3511(-2)
$2^{-10}$ 0.2666.3183(-2)8.3455(-2)
$h$ $\tilde{\eta} + h^{\alpha}\tilde{A}$ $\displaystyle\sup_{n=0, N}|\tilde{e}_n| $ $\textrm{Bound (23)}$
$ 2^{-3}$ 0.7536.1846(-2)1.1423(-1)
$2^{-4}$ 0.5786.3482(-2)9.3146(-2)
$2^{-5}$ 0.4626.3552(-2)8.6966(-2)
$2^{-6}$ 0.3866.3352(-2)8.4792(-2)
$2^{-7}$ 0.3366.3249(-2)8.3971(-2)
$2^{-8}$ 0.3036.3206(-2)8.3645(-2)
$2^{-9}$ 0.2816.3189(-2)8.3511(-2)
$2^{-10}$ 0.2666.3183(-2)8.3455(-2)
Table 6.  Perturbed problem: relationship between global error and bounds from Theorem 4.5 for $\alpha=0.8$ (here $\tilde{\eta}\approx0.201$, $\tilde{K}=1.0$, $\tilde{A}\approx1.933$)
$h$ $\tilde{\eta} + h^{\alpha}\tilde{A}$ $\displaystyle\sup_{n=0, N}|\tilde{e}_n|$ $\textrm{Bound (23)}$
$2^{-2}$ 0.8392.7785(-2)1.5982(-1)
$2^{-3}$ 0.5684.4303(-2)7.4435(-2)
$2^{-4}$ 0.4124.8468(-2)6.7814(-2)
$2^{-5}$ 0.3224.9372(-2)6.6793(-2)
$2^{-6}$ 0.2714.9568(-2)6.6638(-2)
$2^{-7}$ 0.2414.9612(-2)6.6577(-2)
$2^{-8}$ 0.2244.9620(-2)6.6556(-2)
$2^{-9}$ 0.2154.9622(-2)6.6549(-2)
$2^{-10}$ 0.2094.9622(-2)6.6547(-2)
$h$ $\tilde{\eta} + h^{\alpha}\tilde{A}$ $\displaystyle\sup_{n=0, N}|\tilde{e}_n|$ $\textrm{Bound (23)}$
$2^{-2}$ 0.8392.7785(-2)1.5982(-1)
$2^{-3}$ 0.5684.4303(-2)7.4435(-2)
$2^{-4}$ 0.4124.8468(-2)6.7814(-2)
$2^{-5}$ 0.3224.9372(-2)6.6793(-2)
$2^{-6}$ 0.2714.9568(-2)6.6638(-2)
$2^{-7}$ 0.2414.9612(-2)6.6577(-2)
$2^{-8}$ 0.2244.9620(-2)6.6556(-2)
$2^{-9}$ 0.2154.9622(-2)6.6549(-2)
$2^{-10}$ 0.2094.9622(-2)6.6547(-2)
[1]

T. Diogo, N. B. Franco, P. Lima. High order product integration methods for a Volterra integral equation with logarithmic singular kernel. Communications on Pure & Applied Analysis, 2004, 3 (2) : 217-235. doi: 10.3934/cpaa.2004.3.217

[2]

Wen Li, Song Wang, Volker Rehbock. A 2nd-order one-point numerical integration scheme for fractional ordinary differential equations. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 273-287. doi: 10.3934/naco.2017018

[3]

Valentina Casarino, Paolo Ciatti, Silvia Secco. Product structures and fractional integration along curves in the space. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 619-635. doi: 10.3934/dcdss.2013.6.619

[4]

M. R. Arias, R. Benítez. Properties of solutions for nonlinear Volterra integral equations. Conference Publications, 2003, 2003 (Special) : 42-47. doi: 10.3934/proc.2003.2003.42

[5]

Dajana Conte, Raffaele D'Ambrosio, Beatrice Paternoster. On the stability of $\vartheta$-methods for stochastic Volterra integral equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2695-2708. doi: 10.3934/dcdsb.2018087

[6]

Anna Karczewska, Carlos Lizama. On stochastic fractional Volterra equations in Hilbert space. Conference Publications, 2007, 2007 (Special) : 541-550. doi: 10.3934/proc.2007.2007.541

[7]

Paola Buttazzoni, Alessandro Fonda. Periodic perturbations of scalar second order differential equations. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 451-455. doi: 10.3934/dcds.1997.3.451

[8]

Jasmina Djordjević, Svetlana Janković. Reflected backward stochastic differential equations with perturbations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1833-1848. doi: 10.3934/dcds.2018075

[9]

Chun Wang, Tian-Zhou Xu. Stability of the nonlinear fractional differential equations with the right-sided Riemann-Liouville fractional derivative. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 505-521. doi: 10.3934/dcdss.2017025

[10]

Onur Alp İlhan. Solvability of some volterra type integral equations in hilbert space. Conference Publications, 2007, 2007 (Special) : 28-34. doi: 10.3934/proc.2007.2007.28

[11]

Tianxiao Wang, Yufeng Shi. Symmetrical solutions of backward stochastic Volterra integral equations and their applications. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 251-274. doi: 10.3934/dcdsb.2010.14.251

[12]

Yufeng Shi, Tianxiao Wang, Jiongmin Yong. Optimal control problems of forward-backward stochastic Volterra integral equations. Mathematical Control & Related Fields, 2015, 5 (3) : 613-649. doi: 10.3934/mcrf.2015.5.613

[13]

Yufeng Shi, Tianxiao Wang, Jiongmin Yong. Mean-field backward stochastic Volterra integral equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1929-1967. doi: 10.3934/dcdsb.2013.18.1929

[14]

Z. K. Eshkuvatov, M. Kammuji, Bachok M. Taib, N. M. A. Nik Long. Effective approximation method for solving linear Fredholm-Volterra integral equations. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 77-88. doi: 10.3934/naco.2017004

[15]

Tomás Caraballo, Leonid Shaikhet. Stability of delay evolution equations with stochastic perturbations. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2095-2113. doi: 10.3934/cpaa.2014.13.2095

[16]

Hermann Brunner, Chunhua Ou. On the asymptotic stability of Volterra functional equations with vanishing delays. Communications on Pure & Applied Analysis, 2015, 14 (2) : 397-406. doi: 10.3934/cpaa.2015.14.397

[17]

Nguyen Dinh Cong, Doan Thai Son. On integral separation of bounded linear random differential equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 995-1007. doi: 10.3934/dcdss.2016038

[18]

Stanisław Migórski, Shengda Zeng. The Rothe method for multi-term time fractional integral diffusion equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-17. doi: 10.3934/dcdsb.2018204

[19]

Yaozhong Hu, Yanghui Liu, David Nualart. Taylor schemes for rough differential equations and fractional diffusions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3115-3162. doi: 10.3934/dcdsb.2016090

[20]

Daria Bugajewska, Mirosława Zima. On positive solutions of nonlinear fractional differential equations. Conference Publications, 2003, 2003 (Special) : 141-146. doi: 10.3934/proc.2003.2003.141

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (87)
  • HTML views (593)
  • Cited by (3)

[Back to Top]