• Previous Article
    Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions
  • DCDS-B Home
  • This Issue
  • Next Article
    Linear programming formulations of deterministic infinite horizon optimal control problems in discrete time
December  2017, 22(10): 3797-3820. doi: 10.3934/dcdsb.2017191

Threshold dynamics of a reaction-diffusion epidemic model with stage structure

School of Mathematics and Statistics, Lanzhou University, and Key Laboratory of Applied Mathematics and Complex Systems of Gansu province, Lanzhou, Gansu 730000, China

* Corresponding author

Received  December 2016 Revised  May 2017 Published  July 2017

A time-delayed reaction-diffusion epidemic model with stage structure and spatial heterogeneity is investigated, which describes the dynamics of disease spread only proceeding in the adult population. We establish the basic reproduction number $\mathcal{R}_0$ for the model system, which gives the threshold dynamics in the sense that the disease will die out if $\mathcal{R}_0<1$ and the disease will be uniformly persistent if $\mathcal{R}_0>1.$ Furthermore, it is shown that there is at least one positive steady state when $\mathcal{R}_0>1.$ Finally, in terms of general birth function for adult individuals, through introducing two numbers $\check{\mathcal{R}}_0$ and $\hat{\mathcal{R}}_0$, we establish sufficient conditions for the persistence and global extinction of the disease, respectively.

Citation: Liang Zhang, Zhi-Cheng Wang. Threshold dynamics of a reaction-diffusion epidemic model with stage structure. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3797-3820. doi: 10.3934/dcdsb.2017191
References:
[1]

L. J. S. AllenB. M. BolkerY. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst., 21 (2008), 1-20. doi: 10.3934/dcds.2008.21.1.

[2]

B. M. Bolker and B. T. Grenfen, Space, persistence, and dynamics of measles epidemics, Phil. Trans. R. Soc. Lond., B237 (1995), 309-320.

[3]

L. Burlando, Monotonicity of spectral radius for positive operators on ordered Banach spaces, Arch. Math., 56 (1991), 49-57. doi: 10.1007/BF01190081.

[4]

R. S. Cantrell and C. Cosner Spatial Ecology via Reaction-Diffusion Equations, UK: John Wiley and Sons Ltd. , 2003. doi: 10.1002/0470871296.

[5]

V. Capasso, Global solution for a diffusive nonlinear deterministic epidemic model, SIAM J. Appl. Math., 35 (1978), 274-284. doi: 10.1137/0135022.

[6]

D. Daners and P. Koch Medina, Abstract Evolution Equations, Periodic Problems and Applications, Pitman Research Notes in Mathematics Series, 279. Longman, Harlow, UK, 1992.

[7]

O. DiekmannJ. A. P. Heesterbeek and J. A. J. Metz, On the deinition and the computation of the basic production ratio $\mathcal{R}_0$ in the models for infectious disease in heterogeneous population, J. Math. Biol., 28 (1990), 365-382. doi: 10.1007/BF00178324.

[8]

W. E. Fitzgibbon, Semilinear functional differential equations in Banach space, J. Differential Equations, 29 (1978), 1-14. doi: 10.1016/0022-0396(78)90037-2.

[9]

W. E. FitzgibbonM. Langlais and J. J. Morgan, A mathematical model for indirectly transmitted diseases, Math. Biosci., 206 (2007), 233-248. doi: 10.1016/j.mbs.2005.07.005.

[10]

I. Gudelj and K. A. J. White, The effects of spatial movement and group interactions on disease dynamics of social animals, Bull. Math. Biol., 66 (2004), 91-108. doi: 10.1016/S0092-8240(03)00075-2.

[11]

Z. GuoF. Wang and X. Zou, Threshold dynamics of an infective disease model with a fixed latent period and non-local infections, J. Math. Biol., 65 (2012), 1387-1410. doi: 10.1007/s00285-011-0500-y.

[12]

J. K. Hale, Asymptotic Behavior of Dissipative Systems (Mathematical Surveys and Monographs 25), American Mathematical Society, Providence, RI, 1988.

[13]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin-New York, 1981.

[14]

G. HuangY. TakeuchiW. Ma and D. Wei, Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate, Bull. Math. Biol., 72 (2010), 1192-1207. doi: 10.1007/s11538-009-9487-6.

[15]

A. Korobeinikov and P. K. Maini, A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence, Math. Biosci. Eng., 1 (2004), 57-60. doi: 10.3934/mbe.2004.1.57.

[16]

D. Le, Dissipativity and global attractors for a class of quasilinear parabolic systems, Commun. Partial. Diff. Eqns., 22 (1997), 413-433. doi: 10.1080/03605309708821269.

[17]

J. Li and X. Zou, Generalization of the Kermack-McKendrick SIR model to a patchy environment for a disease with latency, Math. Model. Nat. Phenom., 4 (2009), 92-118. doi: 10.1051/mmnp/20094205.

[18]

J. Li and X. Zou, Modeling spatial spread of infectious diseases with a fixed latent period in a spatially continuous domain, Bull. Math. Biol., 71 (2009), 2048-2079. doi: 10.1007/s11538-009-9457-z.

[19]

J. Li and X. Zou, Dynamics of an epidemic model with non-local infections for diseases with latency over a patchy environment, J. Math. Biol., 60 (2010), 645-686. doi: 10.1007/s00285-009-0280-9.

[20]

Y. Lou and X.-Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population, J. Math. Biol., 62 (2011), 543-568. doi: 10.1007/s00285-010-0346-8.

[21]

P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275. doi: 10.1137/S0036141003439173.

[22]

R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44. doi: 10.1090/S0002-9947-1990-0967316-X.

[23]

J. A. J. Metz and O. Diekmann, The Dynamics of Physiologically Structured Populations, Lecture Notes in Biomathematics, 68. Springer-Verlag, Berlin, 1986. doi: 10.1007/978-3-662-13159-6.

[24]

R. Peng and X.-Q. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25 (2012), 1451-1471. doi: 10.1088/0951-7715/25/5/1451.

[25]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-5282-5.

[26]

S. Ruan, Spatial-temporal dynamics in nonlocal epidemiological models, Mathematics for Life Science and Medicine (eds. Y. Iwasa, K. Sato and Y. Takeuchi), Biol. Med. Phys, (2007), 97-122.

[27]

S. Ruan and J. Wu, Modeling Spatial Spread of Communicable Diseases Involving Animal Hosts, Chapman & Hall/CRC, Boca Raton, (2009), 293-316.

[28]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative systems, Math. Surveys and Monographs, 41, Amer. Math. Soc. , Providence, RI, 1995.

[29]

H. L. Smith and X.-Q. Zhao, Robust persistence for semidynamical systems, Nonlinear. Anal., 47 (2001), 6169-6179. doi: 10.1016/S0362-546X(01)00678-2.

[30]

H. R. Thieme, Book review. Linda Rass, John Radcliffe, spatial deterministic epidemics, AMS, 2003, ISBN:0821804995, Math. Biosci., 202 (2006), 218-225. doi: 10.1016/j.mbs.2006.03.015.

[31]

H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211. doi: 10.1137/080732870.

[32]

H. R. Thieme and X.-Q. Zhao, A non-local delayed and diffusive predator-prey model, Nonlinear Anal. Real World Appl., 2 (2001), 145-160. doi: 10.1016/S0362-546X(00)00112-7.

[33]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6.

[34]

W. Wang and X.-Q. Zhao, An epidemic model in a patchy environment, Math. Biosci., 190 (2004), 97-112. doi: 10.1016/j.mbs.2002.11.001.

[35]

W. Wang and X.-Q. Zhao, An age-structured epidemic model in a patchy environment, SIAM J. Appl. Math., 65 (2005), 1597-1614. doi: 10.1137/S0036139903431245.

[36]

W. Wang and X.-Q. Zhao, A nonlocal and time-delayed reaction-diffusion model of Dengue transmission, SIAM J. Appl. Math., 71 (2011), 147-168. doi: 10.1137/090775890.

[37]

W. Wang and X.-Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652-1673. doi: 10.1137/120872942.

[38]

Z.-C. Wang and W.-T. Li, Dynamics of a non-local delayed reaction-diffusion equation without quasi-monotonicity, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 1081-1109. doi: 10.1017/S0308210509000262.

[39]

J. Wu, Theory and Applications of Partial Functional Differential Equations, Applied mathematical sciences, 119. Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4612-4050-1.

[40]

J. Wu, Spatial structure: Partial differential equations models, Math. Biosci. Subser, (2008). doi: 10.1007/978-3-540-78911-6_8.

[41]

J. Wu and X.-Q. Zhao, Diffusive monotonicity and threshold dynamics of delayed reaction diffusion equations, J. Differential Equations, 186 (2002), 470-484. doi: 10.1016/S0022-0396(02)00012-8.

[42]

L. Zhang and Z.-C. Wang, Spatial dynamics of a diffusive predator-prey model with stage structure, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 1831-1853. doi: 10.3934/dcdsb.2015.20.1831.

[43]

X. -Q. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, New York, 2003. doi: 10.1007/978-0-387-21761-1.

[44]

X.-Q. Zhao, Global attractivity in a class of nonmonotone reaction-diffusion equations with time delay, Can. Appl. Math. Q., 17 (2009), 271-281.

show all references

References:
[1]

L. J. S. AllenB. M. BolkerY. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst., 21 (2008), 1-20. doi: 10.3934/dcds.2008.21.1.

[2]

B. M. Bolker and B. T. Grenfen, Space, persistence, and dynamics of measles epidemics, Phil. Trans. R. Soc. Lond., B237 (1995), 309-320.

[3]

L. Burlando, Monotonicity of spectral radius for positive operators on ordered Banach spaces, Arch. Math., 56 (1991), 49-57. doi: 10.1007/BF01190081.

[4]

R. S. Cantrell and C. Cosner Spatial Ecology via Reaction-Diffusion Equations, UK: John Wiley and Sons Ltd. , 2003. doi: 10.1002/0470871296.

[5]

V. Capasso, Global solution for a diffusive nonlinear deterministic epidemic model, SIAM J. Appl. Math., 35 (1978), 274-284. doi: 10.1137/0135022.

[6]

D. Daners and P. Koch Medina, Abstract Evolution Equations, Periodic Problems and Applications, Pitman Research Notes in Mathematics Series, 279. Longman, Harlow, UK, 1992.

[7]

O. DiekmannJ. A. P. Heesterbeek and J. A. J. Metz, On the deinition and the computation of the basic production ratio $\mathcal{R}_0$ in the models for infectious disease in heterogeneous population, J. Math. Biol., 28 (1990), 365-382. doi: 10.1007/BF00178324.

[8]

W. E. Fitzgibbon, Semilinear functional differential equations in Banach space, J. Differential Equations, 29 (1978), 1-14. doi: 10.1016/0022-0396(78)90037-2.

[9]

W. E. FitzgibbonM. Langlais and J. J. Morgan, A mathematical model for indirectly transmitted diseases, Math. Biosci., 206 (2007), 233-248. doi: 10.1016/j.mbs.2005.07.005.

[10]

I. Gudelj and K. A. J. White, The effects of spatial movement and group interactions on disease dynamics of social animals, Bull. Math. Biol., 66 (2004), 91-108. doi: 10.1016/S0092-8240(03)00075-2.

[11]

Z. GuoF. Wang and X. Zou, Threshold dynamics of an infective disease model with a fixed latent period and non-local infections, J. Math. Biol., 65 (2012), 1387-1410. doi: 10.1007/s00285-011-0500-y.

[12]

J. K. Hale, Asymptotic Behavior of Dissipative Systems (Mathematical Surveys and Monographs 25), American Mathematical Society, Providence, RI, 1988.

[13]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin-New York, 1981.

[14]

G. HuangY. TakeuchiW. Ma and D. Wei, Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate, Bull. Math. Biol., 72 (2010), 1192-1207. doi: 10.1007/s11538-009-9487-6.

[15]

A. Korobeinikov and P. K. Maini, A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence, Math. Biosci. Eng., 1 (2004), 57-60. doi: 10.3934/mbe.2004.1.57.

[16]

D. Le, Dissipativity and global attractors for a class of quasilinear parabolic systems, Commun. Partial. Diff. Eqns., 22 (1997), 413-433. doi: 10.1080/03605309708821269.

[17]

J. Li and X. Zou, Generalization of the Kermack-McKendrick SIR model to a patchy environment for a disease with latency, Math. Model. Nat. Phenom., 4 (2009), 92-118. doi: 10.1051/mmnp/20094205.

[18]

J. Li and X. Zou, Modeling spatial spread of infectious diseases with a fixed latent period in a spatially continuous domain, Bull. Math. Biol., 71 (2009), 2048-2079. doi: 10.1007/s11538-009-9457-z.

[19]

J. Li and X. Zou, Dynamics of an epidemic model with non-local infections for diseases with latency over a patchy environment, J. Math. Biol., 60 (2010), 645-686. doi: 10.1007/s00285-009-0280-9.

[20]

Y. Lou and X.-Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population, J. Math. Biol., 62 (2011), 543-568. doi: 10.1007/s00285-010-0346-8.

[21]

P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275. doi: 10.1137/S0036141003439173.

[22]

R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44. doi: 10.1090/S0002-9947-1990-0967316-X.

[23]

J. A. J. Metz and O. Diekmann, The Dynamics of Physiologically Structured Populations, Lecture Notes in Biomathematics, 68. Springer-Verlag, Berlin, 1986. doi: 10.1007/978-3-662-13159-6.

[24]

R. Peng and X.-Q. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25 (2012), 1451-1471. doi: 10.1088/0951-7715/25/5/1451.

[25]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-5282-5.

[26]

S. Ruan, Spatial-temporal dynamics in nonlocal epidemiological models, Mathematics for Life Science and Medicine (eds. Y. Iwasa, K. Sato and Y. Takeuchi), Biol. Med. Phys, (2007), 97-122.

[27]

S. Ruan and J. Wu, Modeling Spatial Spread of Communicable Diseases Involving Animal Hosts, Chapman & Hall/CRC, Boca Raton, (2009), 293-316.

[28]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative systems, Math. Surveys and Monographs, 41, Amer. Math. Soc. , Providence, RI, 1995.

[29]

H. L. Smith and X.-Q. Zhao, Robust persistence for semidynamical systems, Nonlinear. Anal., 47 (2001), 6169-6179. doi: 10.1016/S0362-546X(01)00678-2.

[30]

H. R. Thieme, Book review. Linda Rass, John Radcliffe, spatial deterministic epidemics, AMS, 2003, ISBN:0821804995, Math. Biosci., 202 (2006), 218-225. doi: 10.1016/j.mbs.2006.03.015.

[31]

H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211. doi: 10.1137/080732870.

[32]

H. R. Thieme and X.-Q. Zhao, A non-local delayed and diffusive predator-prey model, Nonlinear Anal. Real World Appl., 2 (2001), 145-160. doi: 10.1016/S0362-546X(00)00112-7.

[33]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6.

[34]

W. Wang and X.-Q. Zhao, An epidemic model in a patchy environment, Math. Biosci., 190 (2004), 97-112. doi: 10.1016/j.mbs.2002.11.001.

[35]

W. Wang and X.-Q. Zhao, An age-structured epidemic model in a patchy environment, SIAM J. Appl. Math., 65 (2005), 1597-1614. doi: 10.1137/S0036139903431245.

[36]

W. Wang and X.-Q. Zhao, A nonlocal and time-delayed reaction-diffusion model of Dengue transmission, SIAM J. Appl. Math., 71 (2011), 147-168. doi: 10.1137/090775890.

[37]

W. Wang and X.-Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652-1673. doi: 10.1137/120872942.

[38]

Z.-C. Wang and W.-T. Li, Dynamics of a non-local delayed reaction-diffusion equation without quasi-monotonicity, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 1081-1109. doi: 10.1017/S0308210509000262.

[39]

J. Wu, Theory and Applications of Partial Functional Differential Equations, Applied mathematical sciences, 119. Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4612-4050-1.

[40]

J. Wu, Spatial structure: Partial differential equations models, Math. Biosci. Subser, (2008). doi: 10.1007/978-3-540-78911-6_8.

[41]

J. Wu and X.-Q. Zhao, Diffusive monotonicity and threshold dynamics of delayed reaction diffusion equations, J. Differential Equations, 186 (2002), 470-484. doi: 10.1016/S0022-0396(02)00012-8.

[42]

L. Zhang and Z.-C. Wang, Spatial dynamics of a diffusive predator-prey model with stage structure, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 1831-1853. doi: 10.3934/dcdsb.2015.20.1831.

[43]

X. -Q. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, New York, 2003. doi: 10.1007/978-0-387-21761-1.

[44]

X.-Q. Zhao, Global attractivity in a class of nonmonotone reaction-diffusion equations with time delay, Can. Appl. Math. Q., 17 (2009), 271-281.

[1]

Shuling Yan, Shangjiang Guo. Dynamics of a Lotka-Volterra competition-diffusion model with stage structure and spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1559-1579. doi: 10.3934/dcdsb.2018059

[2]

Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37

[3]

John Cleveland. Basic stage structure measure valued evolutionary game model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 291-310. doi: 10.3934/mbe.2015.12.291

[4]

Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595

[5]

Ling Xue, Caterina Scoglio. Network-level reproduction number and extinction threshold for vector-borne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565-584. doi: 10.3934/mbe.2015.12.565

[6]

Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455

[7]

Liang Zhang, Zhi-Cheng Wang. Spatial dynamics of a diffusive predator-prey model with stage structure. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1831-1853. doi: 10.3934/dcdsb.2015.20.1831

[8]

Cui-Ping Cheng, Wan-Tong Li, Zhi-Cheng Wang. Asymptotic stability of traveling wavefronts in a delayed population model with stage structure on a two-dimensional spatial lattice. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 559-575. doi: 10.3934/dcdsb.2010.13.559

[9]

Sebastian J. Schreiber. On persistence and extinction for randomly perturbed dynamical systems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 457-463. doi: 10.3934/dcdsb.2007.7.457

[10]

W. E. Fitzgibbon, M.E. Parrott, Glenn Webb. Diffusive epidemic models with spatial and age dependent heterogeneity. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 35-57. doi: 10.3934/dcds.1995.1.35

[11]

Yu-Xia Wang, Wan-Tong Li. Combined effects of the spatial heterogeneity and the functional response. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 19-39. doi: 10.3934/dcds.2019002

[12]

Yuan-Hang Su, Wan-Tong Li, Fei-Ying Yang. Effects of nonlocal dispersal and spatial heterogeneity on total biomass. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-8. doi: 10.3934/dcdsb.2019038

[13]

Tom Burr, Gerardo Chowell. The reproduction number $R_t$ in structured and nonstructured populations. Mathematical Biosciences & Engineering, 2009, 6 (2) : 239-259. doi: 10.3934/mbe.2009.6.239

[14]

Xiaoyan Zhang, Yuxiang Zhang. Spatial dynamics of a reaction-diffusion cholera model with spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2625-2640. doi: 10.3934/dcdsb.2018124

[15]

Svend Christensen, Preben Klarskov Hansen, Guozheng Qi, Jihuai Wang. The mathematical method of studying the reproduction structure of weeds and its application to Bromus sterilis. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 777-788. doi: 10.3934/dcdsb.2004.4.777

[16]

Wen Jin, Horst R. Thieme. Persistence and extinction of diffusing populations with two sexes and short reproductive season. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3209-3218. doi: 10.3934/dcdsb.2014.19.3209

[17]

Keng Deng, Yixiang Wu. Extinction and uniform strong persistence of a size-structured population model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 831-840. doi: 10.3934/dcdsb.2017041

[18]

Wen Jin, Horst R. Thieme. An extinction/persistence threshold for sexually reproducing populations: The cone spectral radius. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 447-470. doi: 10.3934/dcdsb.2016.21.447

[19]

Fabio Augusto Milner, Ruijun Zhao. A deterministic model of schistosomiasis with spatial structure. Mathematical Biosciences & Engineering, 2008, 5 (3) : 505-522. doi: 10.3934/mbe.2008.5.505

[20]

Roger M. Nisbet, Kurt E. Anderson, Edward McCauley, Mark A. Lewis. Response of equilibrium states to spatial environmental heterogeneity in advective systems. Mathematical Biosciences & Engineering, 2007, 4 (1) : 1-13. doi: 10.3934/mbe.2007.4.1

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (24)
  • HTML views (2)
  • Cited by (0)

Other articles
by authors

[Back to Top]