doi: 10.3934/dcdsb.2017209

Positive steady states of a density-dependent predator-prey model with diffusion

1. 

School of Mathematics and Statistics, Northwest Normal University Lanzhou, 730070, China School of Mathematical Science, Huaiyin Normal University Huaian, 223300, China

2. 

School of Mathematical Science, Huaiyin Normal University Huaian, 223300, China

3. 

School of Physical and Mathematical Sciences, Nanjing Tech University Nanjing, Jiangsu 211816, China

4. 

School of Mathematics and Statistics, Northwest Normal University Lanzhou, 730070, China

* Corresponding author

* Corresponding author

Received  March 2017 Revised  July 2017 Published  September 2017

Fund Project: This research was supported by the National Science Foundation of China (Grant number 61672013,11601179,11601226,11361055 and 61373005) and the Natural Science Foundation of Jiangsu Province of China (BK20140927)

In this paper, we investigate the rich dynamics of a diffusive Holling type-Ⅱ predator-prey model with density-dependent death rate for the predator under homogeneous Neumann boundary condition. The value of this study lies in two-aspects. Mathematically, we show the stability of the constant positive steady state solution, the existence and nonexistence, the local and global structure of nonconstant positive steady state solutions. And biologically, we find that Turing instability is induced by the density-dependent death rate, and both the general stationary pattern and Turing pattern can be observed as a result of diffusion.

Citation: Kaigang Huang, Yongli Cai, Feng Rao, Shengmao Fu, Weiming Wang. Positive steady states of a density-dependent predator-prey model with diffusion. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2017209
References:
[1]

P. A. Abrams, The fallacies of "ratio-dependent" predation, Ecology, 75 (1994), 1842-1850.

[2]

P. A. Abrams and L. R. Ginzburg, The nature of predation: prey dependent, ratio dependent or neither?, Trends in Ecology and Evolution 15 (2000), p337.

[3]

A. Ardito and P. Ricciardi, Lyapunov functions for a generalized gause-type model, Journal of Mathematical Biology, 33 (1995), 816-828. doi: 10.1007/BF00187283.

[4]

N. F. Britton, Essential Mathematical Biology Springer Undergraduate Mathematics Series. Springer-Verlag London, Ltd. , London, 2003.

[5]

Y. L. CaiW. M. Wang and J. F. Wang, Dynamics of a diffusive predator-prey model with additive allee effect, International Journal of Biomathematics, 39 (2012), 105-115.

[6]

Y. L. CaiM. BanerjeeY. Kang and W. M. Wang, Spatiotemporal complexity in a predator--prey model with weak allee effects, Mathematical Biosciences and Engineering, 11 (2014), 1247-1274. doi: 10.3934/mbe.2014.11.1247.

[7]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, Journal of Functional Analysis, 8 (1971), 321-340.

[8]

Y. H. DuP. Y. H. Pang and M. X. Wang, Qualitative analysis of a prey-predator model with stage structure for the predator, SIAM J. Appl. Math., 69 (2008), 596-620. doi: 10.1137/070684173.

[9]

A. Eigenwillig, Real root isolation for exact and approximate polynomials using descartes' rule of signs, 2008.

[10]

S. Fan, A new extracting formula and a new distinguishing means on the one variable cubic equation, Natural Science Journal of Hainan Teacheres College, 2 (1989), 91-98.

[11]

S. M. FuZ. J. Wen and S. B. Cui, Uniform boundedness and stability of global solutions in a strongly coupled three-species cooperating model, Nonlinear Analysis Real World Applications, 9 (2008), 272-289. doi: 10.1016/j.nonrwa.2006.10.003.

[12]

K. Fujii, Complexity-stability relationship of two-prey-one-predator species system model: Local and global stability, Journal of Theoretical Biology, 69 (1977), 613-623. doi: 10.1016/0022-5193(77)90370-8.

[13]

K. Hasík, On a predator-prey system of gause type, Journal of Mathematical Biology, 60 (2010), 59-74. doi: 10.1007/s00285-009-0257-8.

[14]

J. JangW. M. Ni and M. Tang, Global bifurcation and structure of turing patterns in the 1-d lengyel-epstein model, Journal of Dynamics and Differential Equations, 16 (2004), 297-320. doi: 10.1007/s10884-004-2782-x.

[15]

Y. Kang and L. Wedekin, Dynamics of a intraguild predation model with generalist or specialist predator, Journal of Mathematical Biology, 67 (2013), 1227-1259. doi: 10.1007/s00285-012-0584-z.

[16]

W. Ko and K. Ryu, Non-constant positive steady-states of a diffusive predator-prey system in homogeneous environment, Journal of Mathematical Analysis and Applications, 327 (2007), 539-549. doi: 10.1016/j.jmaa.2006.04.077.

[17]

Y. Kuang, Rich dynamics of gause-type ratio-dependent predator-prey system, Fields Institute Communications, 21 (1999), 325-337.

[18]

Y. Kuang, Global stability of gause-type predator-prey systems, Journal of Mathematical Biology, 28 (1990), 463-474. doi: 10.1007/BF00178329.

[19]

S. B. LiJ. H. Wu and Y. Y. Dong, Turing patterns in a reaction-diffusion model with the degn-harrison reaction scheme, Journal of Differential Equations, 259 (2015), 1990-2029. doi: 10.1016/j.jde.2015.03.017.

[20]

X. LiW. H. Jiang and J. P. Shi, Hopf bifurcation and turing instability in the reaction-diffusion holling-tanner predator-prey model, Journal of Applied Mathematics, 78 (2013), 287-306. doi: 10.1093/imamat/hxr050.

[21]

C. S. LinW. M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, Journal of Differential Equations, 72 (1988), 1-27. doi: 10.1016/0022-0396(88)90147-7.

[22]

Y. Lou and W. M. Ni, Diffusion vs cross-diffusion: An elliptic approach, Journal of Differential Equations, 154 (1999), 157-190. doi: 10.1006/jdeq.1998.3559.

[23]

W. M. Ni and M. Tang, Turing patterns in the lengyel-epstein system for the cima reaction, Transactions of the American Mathematical Society, 357 (2005), 3953-3969. doi: 10.1090/S0002-9947-05-04010-9.

[24]

W. M. Ni, Cross-diffusion and their spike-layer steady states, Notices of the American Mathematical Society, 45 (1998), 9-18.

[25]

L. Nirenberg, Topics in Nonlinear Functional Analysis Courant Institute of Mathematical Sciences, 1974.

[26]

P. Y. H. Pang and M. X. Wang, Strategy and stationary pattern in a three-species predator-prey model, Journal of Differential Equations, 200 (2004), 245-273. doi: 10.1016/j.jde.2004.01.004.

[27]

R. Peng and M. X. Wang, Note on a ratio-dependent predator-prey system with diffusion, Nonlinear Analysis Real World Applications, 7 (2006), 1-11. doi: 10.1016/j.nonrwa.2004.11.008.

[28]

J. F. Savino and R. A. Stein, Predator-prey interaction between largemouth bass and bluegills as influenced by simulated, submersed vegetation, Transactions of the American Fisheries Society, 111 (1982), 255-266.

[29]

J. P. Shi, Persistence and bifurcation of degenerate solutions, Journal of Functional Analysis, 169 (1999), 494-531.

[30]

H. B. Shi and S. G. Ruan, Spatial, temporal and spatiotemporal patterns of diffusive predator-prey models with mutual interference, Journal of Applied Mathematics, 80 (2015), 1534-1568. doi: 10.1093/imamat/hxv006.

[31]

H. B. ShiW. T. Li and G. Lin, Positive steady states of a diffusive predator-prey system with modified holling-tanner functional response, Nonlinear Analysis Real World Applications, 11 (2010), 3711-3721. doi: 10.1016/j.nonrwa.2010.02.001.

[32]

A. Sikder and A. B. Roy, Persistence of a generalized gause-type two prey-two predator pair linked by competition, Mathematical Biosciences, 122 (1994), 1-23. doi: 10.1016/0025-5564(94)90080-9.

[33]

I. Takagi, Point-condensation for a reaction-diffusion system, Journal of Differential Equations, 61 (1986), 208-249. doi: 10.1016/0022-0396(86)90119-1.

[34]

M. X. Wang, Stationary patterns of strongly coupled prey-predator models, Journal of Mathematical Analysis and Applications, 292 (2004), 484-505. doi: 10.1016/j.jmaa.2003.12.027.

[35]

M. X. Wang, Non-constant positive steady states of the sel'kov model, Journal of Differential Equations, 190 (2003), 600-620. doi: 10.1016/S0022-0396(02)00100-6.

[36]

Z. J. Wen and S. M. Fu, Global solutions to a class of multi-species reaction-diffusion systems with cross-diffusions arising in population dynamics, Journal of Computational and Applied Mathematics, 230 (2009), 34-43. doi: 10.1016/j.cam.2008.10.064.

[37]

X. Z. Zeng and Z. H. Liu, Non-constant positive steady states of a prey-predator system with cross-diffusions, Journal of Mathematical Analysis and Applications, 332 (2007), 989-1009. doi: 10.1016/j.jmaa.2006.10.075.

[38]

X. Z. Zeng and Z. H. Liu, Nonconstant positive steady states for a ratio-dependent predator-prey system with cross-diffusion, Journal of Mathematical Analysis and Applications, 11 (2010), 372-390. doi: 10.1016/j.nonrwa.2008.11.010.

show all references

References:
[1]

P. A. Abrams, The fallacies of "ratio-dependent" predation, Ecology, 75 (1994), 1842-1850.

[2]

P. A. Abrams and L. R. Ginzburg, The nature of predation: prey dependent, ratio dependent or neither?, Trends in Ecology and Evolution 15 (2000), p337.

[3]

A. Ardito and P. Ricciardi, Lyapunov functions for a generalized gause-type model, Journal of Mathematical Biology, 33 (1995), 816-828. doi: 10.1007/BF00187283.

[4]

N. F. Britton, Essential Mathematical Biology Springer Undergraduate Mathematics Series. Springer-Verlag London, Ltd. , London, 2003.

[5]

Y. L. CaiW. M. Wang and J. F. Wang, Dynamics of a diffusive predator-prey model with additive allee effect, International Journal of Biomathematics, 39 (2012), 105-115.

[6]

Y. L. CaiM. BanerjeeY. Kang and W. M. Wang, Spatiotemporal complexity in a predator--prey model with weak allee effects, Mathematical Biosciences and Engineering, 11 (2014), 1247-1274. doi: 10.3934/mbe.2014.11.1247.

[7]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, Journal of Functional Analysis, 8 (1971), 321-340.

[8]

Y. H. DuP. Y. H. Pang and M. X. Wang, Qualitative analysis of a prey-predator model with stage structure for the predator, SIAM J. Appl. Math., 69 (2008), 596-620. doi: 10.1137/070684173.

[9]

A. Eigenwillig, Real root isolation for exact and approximate polynomials using descartes' rule of signs, 2008.

[10]

S. Fan, A new extracting formula and a new distinguishing means on the one variable cubic equation, Natural Science Journal of Hainan Teacheres College, 2 (1989), 91-98.

[11]

S. M. FuZ. J. Wen and S. B. Cui, Uniform boundedness and stability of global solutions in a strongly coupled three-species cooperating model, Nonlinear Analysis Real World Applications, 9 (2008), 272-289. doi: 10.1016/j.nonrwa.2006.10.003.

[12]

K. Fujii, Complexity-stability relationship of two-prey-one-predator species system model: Local and global stability, Journal of Theoretical Biology, 69 (1977), 613-623. doi: 10.1016/0022-5193(77)90370-8.

[13]

K. Hasík, On a predator-prey system of gause type, Journal of Mathematical Biology, 60 (2010), 59-74. doi: 10.1007/s00285-009-0257-8.

[14]

J. JangW. M. Ni and M. Tang, Global bifurcation and structure of turing patterns in the 1-d lengyel-epstein model, Journal of Dynamics and Differential Equations, 16 (2004), 297-320. doi: 10.1007/s10884-004-2782-x.

[15]

Y. Kang and L. Wedekin, Dynamics of a intraguild predation model with generalist or specialist predator, Journal of Mathematical Biology, 67 (2013), 1227-1259. doi: 10.1007/s00285-012-0584-z.

[16]

W. Ko and K. Ryu, Non-constant positive steady-states of a diffusive predator-prey system in homogeneous environment, Journal of Mathematical Analysis and Applications, 327 (2007), 539-549. doi: 10.1016/j.jmaa.2006.04.077.

[17]

Y. Kuang, Rich dynamics of gause-type ratio-dependent predator-prey system, Fields Institute Communications, 21 (1999), 325-337.

[18]

Y. Kuang, Global stability of gause-type predator-prey systems, Journal of Mathematical Biology, 28 (1990), 463-474. doi: 10.1007/BF00178329.

[19]

S. B. LiJ. H. Wu and Y. Y. Dong, Turing patterns in a reaction-diffusion model with the degn-harrison reaction scheme, Journal of Differential Equations, 259 (2015), 1990-2029. doi: 10.1016/j.jde.2015.03.017.

[20]

X. LiW. H. Jiang and J. P. Shi, Hopf bifurcation and turing instability in the reaction-diffusion holling-tanner predator-prey model, Journal of Applied Mathematics, 78 (2013), 287-306. doi: 10.1093/imamat/hxr050.

[21]

C. S. LinW. M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, Journal of Differential Equations, 72 (1988), 1-27. doi: 10.1016/0022-0396(88)90147-7.

[22]

Y. Lou and W. M. Ni, Diffusion vs cross-diffusion: An elliptic approach, Journal of Differential Equations, 154 (1999), 157-190. doi: 10.1006/jdeq.1998.3559.

[23]

W. M. Ni and M. Tang, Turing patterns in the lengyel-epstein system for the cima reaction, Transactions of the American Mathematical Society, 357 (2005), 3953-3969. doi: 10.1090/S0002-9947-05-04010-9.

[24]

W. M. Ni, Cross-diffusion and their spike-layer steady states, Notices of the American Mathematical Society, 45 (1998), 9-18.

[25]

L. Nirenberg, Topics in Nonlinear Functional Analysis Courant Institute of Mathematical Sciences, 1974.

[26]

P. Y. H. Pang and M. X. Wang, Strategy and stationary pattern in a three-species predator-prey model, Journal of Differential Equations, 200 (2004), 245-273. doi: 10.1016/j.jde.2004.01.004.

[27]

R. Peng and M. X. Wang, Note on a ratio-dependent predator-prey system with diffusion, Nonlinear Analysis Real World Applications, 7 (2006), 1-11. doi: 10.1016/j.nonrwa.2004.11.008.

[28]

J. F. Savino and R. A. Stein, Predator-prey interaction between largemouth bass and bluegills as influenced by simulated, submersed vegetation, Transactions of the American Fisheries Society, 111 (1982), 255-266.

[29]

J. P. Shi, Persistence and bifurcation of degenerate solutions, Journal of Functional Analysis, 169 (1999), 494-531.

[30]

H. B. Shi and S. G. Ruan, Spatial, temporal and spatiotemporal patterns of diffusive predator-prey models with mutual interference, Journal of Applied Mathematics, 80 (2015), 1534-1568. doi: 10.1093/imamat/hxv006.

[31]

H. B. ShiW. T. Li and G. Lin, Positive steady states of a diffusive predator-prey system with modified holling-tanner functional response, Nonlinear Analysis Real World Applications, 11 (2010), 3711-3721. doi: 10.1016/j.nonrwa.2010.02.001.

[32]

A. Sikder and A. B. Roy, Persistence of a generalized gause-type two prey-two predator pair linked by competition, Mathematical Biosciences, 122 (1994), 1-23. doi: 10.1016/0025-5564(94)90080-9.

[33]

I. Takagi, Point-condensation for a reaction-diffusion system, Journal of Differential Equations, 61 (1986), 208-249. doi: 10.1016/0022-0396(86)90119-1.

[34]

M. X. Wang, Stationary patterns of strongly coupled prey-predator models, Journal of Mathematical Analysis and Applications, 292 (2004), 484-505. doi: 10.1016/j.jmaa.2003.12.027.

[35]

M. X. Wang, Non-constant positive steady states of the sel'kov model, Journal of Differential Equations, 190 (2003), 600-620. doi: 10.1016/S0022-0396(02)00100-6.

[36]

Z. J. Wen and S. M. Fu, Global solutions to a class of multi-species reaction-diffusion systems with cross-diffusions arising in population dynamics, Journal of Computational and Applied Mathematics, 230 (2009), 34-43. doi: 10.1016/j.cam.2008.10.064.

[37]

X. Z. Zeng and Z. H. Liu, Non-constant positive steady states of a prey-predator system with cross-diffusions, Journal of Mathematical Analysis and Applications, 332 (2007), 989-1009. doi: 10.1016/j.jmaa.2006.10.075.

[38]

X. Z. Zeng and Z. H. Liu, Nonconstant positive steady states for a ratio-dependent predator-prey system with cross-diffusion, Journal of Mathematical Analysis and Applications, 11 (2010), 372-390. doi: 10.1016/j.nonrwa.2008.11.010.

Figure 1.  Numerical simulations of the long time behavior of solution $(N(x, t), P(x, t))$ of model (5) with different values of $d_2$. (a) $d_2=0.6$; (b) $d_2=0.25$;
[1]

Tian Xiang. A study on the positive nonconstant steady states of nonlocal chemotaxis systems. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2013.18.2457

[2]

Shanshan Chen. Nonexistence of nonconstant positive steady states of a diffusive predator-prey model. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2018026

[3]

Jing Liu, Xiaodong Liu, Sining Zheng, Yanping Lin. Positive steady state of a food chain system with diffusion. Conference Publications, doi: 10.3934/proc.2007.2007.667

[4]

Yan'e Wang, Jianhua Wu. Stability of positive constant steady states and their bifurcation in a biological depletion model. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2011.15.849

[5]

Hua Nie, Wenhao Xie, Jianhua Wu. Uniqueness of positive steady state solutions to the unstirred chemostat model with external inhibitor. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2013.12.1279

[6]

Lijuan Wang, Hongling Jiang, Ying Li. Positive steady state solutions of a plant-pollinator model with diffusion. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2015.20.1805

[7]

Georg Hetzer, Anotida Madzvamuse, Wenxian Shen. Characterization of turing diffusion-driven instability on evolving domains. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2012.32.3975

[8]

Steffen Härting, Anna Marciniak-Czochra, Izumi Takagi. Stable patterns with jump discontinuity in systems with Turing instability and hysteresis. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2017032

[9]

Haidong Liu, Zhaoli Liu. Positive solutions of a nonlinear Schrödinger system with nonconstant potentials. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2016.36.1431

[10]

Fengqi Yi, Eamonn A. Gaffney, Sungrim Seirin-Lee. The bifurcation analysis of turing pattern formation induced by delay and diffusion in the Schnakenberg system. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2017031

[11]

Shin-Yi Lee, Shin-Hwa Wang, Chiou-Ping Ye. Explicit necessary and sufficient conditions for the existence of a dead core solution of a p-laplacian steady-state reaction-diffusion problem. Conference Publications, doi: 10.3934/proc.2005.2005.587

[12]

Jun Zhou, Chan-Gyun Kim, Junping Shi. Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2014.34.3875

[13]

Maya Mincheva, Gheorghe Craciun. Graph-theoretic conditions for zero-eigenvalue Turing instability in general chemical reaction networks. Mathematical Biosciences & Engineering, doi: 10.3934/mbe.2013.10.1207

[14]

Zhifu Xie. Turing instability in a coupled predator-prey model with different Holling type functional responses. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2011.4.1621

[15]

Xiaofeng Xu, Junjie Wei. Turing-Hopf bifurcation of a class of modified Leslie-Gower model with diffusion. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2018042

[16]

Chao Xing, Ping Zhou, Hong Luo. The steady state solutions to thermohaline circulation equations. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2016117

[17]

Lena Noethen, Sebastian Walcher. Tikhonov's theorem and quasi-steady state. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2011.16.945

[18]

Orazio Muscato, Wolfgang Wagner, Vincenza Di Stefano. Properties of the steady state distribution of electrons in semiconductors. Kinetic & Related Models, doi: 10.3934/krm.2011.4.809

[19]

Youcef Amirat, Kamel Hamdache. Steady state solutions of ferrofluid flow models. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2016039

[20]

Qi Wang. On the steady state of a shadow system to the SKT competition model. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2014.19.2941

2016 Impact Factor: 0.994

Article outline

Figures and Tables

[Back to Top]