doi: 10.3934/dcdsb.2017213

Analysis of a free boundary problem for tumor growth with Gibbs-Thomson relation and time delays

1. 

School of Mathematics and Statistics, Zhaoqing University, Zhaoqing, Guangdong 526061, China

2. 

College of Transport and Communications, Shanghai Maritime University, Shanghai 201306, China

* Corresponding author: Shihe Xu

Received  April 2017 Revised  June 2017 Published  September 2017

Fund Project: The first two authors of this work are partially supported by NNSF of China (11301474), Foundation for Distinguish Young Teacher in Higher Education of Guangdong, China(YQ2015167) and NSF of Guangdong Province (2015A030313707), the third author is partially supported by NNSF of China(51508319,61374195,51409157)

In this paper we study a free boundary problem for tumor growth with Gibbs-Thomson relation and time delays. It is assumed that the process of proliferation is delayed compared with apoptosis. The delay represents the time taken for cells to undergo mitosis. By employing stability theory for functional differential equations, comparison principle and some meticulous mathematical analysis, we mainly study the asymptotic behavior of the solution, and prove that in the case $c$ (the ratio of the diffusion time scale to the tumor doubling time scale) is sufficiently small, the volume of the tumor cannot expand unlimitedly. It will either disappear or evolve to one of two dormant states as $t\to ∞$. The results show that dynamical behavior of solutions of the model are similar to that of solutions for corresponding nonretarded problems under some conditions.

Citation: Shihe Xu, Meng Bai, Fangwei Zhang. Analysis of a free boundary problem for tumor growth with Gibbs-Thomson relation and time delays. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2017213
References:
[1]

M. Bodnar, The nonnegativity of solutions of delay differential equations, Appl. Math. Lett., 13 (2000), 91-95.

[2]

M. Bodnar and U. Foryś, Time delay in necrotic core formation, Math. Biosci. Eng., 2 (2005), 461-472. doi: 10.3934/mbe.2005.2.461.

[3]

H. Byrne, The effect of time delays on the dynamics of avascular tumor growth, Math. Biosci., 144 (1997), 83-117. doi: 10.1016/S0025-5564(97)00023-0.

[4]

H. Byrne and M. Chaplain, Growth of nonnecrotic tumors in the presence and absence of inhibitors, Math. Biosci., 130 (1995), 151-181. doi: 10.1016/0025-5564(94)00117-3.

[5]

H. Byrne and M. Chaplain, Growth of necrotic tumors in the presence and absence of inhibitors, Math. Biosci., 135 (1996), 187-216. doi: 10.1016/0025-5564(96)00023-5.

[6]

H. M. Byrne, Modelling aspects of cancer dynamics: A review, Trans. Royal Soc. A, 364 (2006), 1563-1578. doi: 10.1098/rsta.2006.1786.

[7]

S. Cui, Fromation of necrotic cores in the growth of tumors: Analytic results, Aata. Math. Scientia, 26 (2006), 781-796. doi: 10.1016/S0252-9602(06)60104-5.

[8]

S. Cui and A. Friedman, Analysis of a mathematical model of the effect of inhibitors on the growth of tumors, Math. Biosci., 164 (2000), 103-137. doi: 10.1016/S0025-5564(99)00063-2.

[9]

S. Cui, Analysis of a free boundary problem modeling tumor growth, Acta. Math. Sinica., 21 (2005), 1071-1082. doi: 10.1007/s10114-004-0483-3.

[10]

S. Cui and S. Xu, Analysis of mathematical models for the growth of tumors with time delays in cell proliferation, J. Math. Anal. Appl., 336 (2007), 523-541. doi: 10.1016/j.jmaa.2007.02.047.

[11]

U. Foryś and M. Bodnar, Time delays in proliferation process for solid avascular tumour, Math. Comput. Modelling, 37 (2003), 1201-1209. doi: 10.1016/S0895-7177(03)80019-5.

[12]

U. Foryś and A. Mokwa-Borkowska, Solid tumour growth analysis of necrotic core formation, Math. Comput. Modelling, 42 (2005), 593-600. doi: 10.1016/j.mcm.2004.06.022.

[13]

U. Foryś and M. Kolev, Time delays in proliferation and apoptosis for solid avascular tumour, Mathematical Modelling of Population Dynamics, 63 (2004), 187-196.

[14]

A. Friedman and F. Reitich, Analysis of a mathematical model for the growth of tumors, J. Math. Biol., 38 (1999), 262-284. doi: 10.1007/s002850050149.

[15]

H. Greenspan, Models for the growth of solid tumor by diffusion, Stud. Appl. Math., 51 (1972), 317-340. doi: 10.1002/sapm1972514317.

[16]

H. Greenspan, On the growth and stability of cell cultures and solid tumors, J. Theor. Biol., 56 (1976), 229-242. doi: 10.1016/S0022-5193(76)80054-9.

[17]

J. Hale, Theory of Functional Differential Equations, 2nd edition, Springer-Verlag, New York, 1977.

[18]

J. Wu, Stationary solutions of a free boundary problem modeling the growth of tumors with Gibbs-Thomson relation, J. Differential Equations, 260 (2016), 5875-5893. doi: 10.1016/j.jde.2015.12.023.

[19]

J. Wu, Analysis of a mathematical model for tumor growth with Gibbs-Thomson relation, J. Math. Anal. Appl., 450 (2017), 532-543. doi: 10.1016/j.jmaa.2017.01.051.

[20]

J. Wu and F. Zhou, Asymptotic behavior of solutions of a free boundary problem modeling tumor spheroid with Gibbs-Thomson relation, J. Differential Equations, 262 (2017), 4907-4930. doi: 10.1016/j.jde.2017.01.012.

[21]

S. Xu, Analysis of a free boundary problem for avascular tumor growth with a periodic supply of nutrients, Discrete and Contin. Dyn. Syst. B., 21 (2016), 997-1008.

[22]

S. XuM. Bai and X. Q. Zhao, Analysis of a solid avascular tumor growth model with time delays in proliferation process, J. Math. Anal. Appl., 391 (2012), 38-47. doi: 10.1016/j.jmaa.2012.02.034.

show all references

References:
[1]

M. Bodnar, The nonnegativity of solutions of delay differential equations, Appl. Math. Lett., 13 (2000), 91-95.

[2]

M. Bodnar and U. Foryś, Time delay in necrotic core formation, Math. Biosci. Eng., 2 (2005), 461-472. doi: 10.3934/mbe.2005.2.461.

[3]

H. Byrne, The effect of time delays on the dynamics of avascular tumor growth, Math. Biosci., 144 (1997), 83-117. doi: 10.1016/S0025-5564(97)00023-0.

[4]

H. Byrne and M. Chaplain, Growth of nonnecrotic tumors in the presence and absence of inhibitors, Math. Biosci., 130 (1995), 151-181. doi: 10.1016/0025-5564(94)00117-3.

[5]

H. Byrne and M. Chaplain, Growth of necrotic tumors in the presence and absence of inhibitors, Math. Biosci., 135 (1996), 187-216. doi: 10.1016/0025-5564(96)00023-5.

[6]

H. M. Byrne, Modelling aspects of cancer dynamics: A review, Trans. Royal Soc. A, 364 (2006), 1563-1578. doi: 10.1098/rsta.2006.1786.

[7]

S. Cui, Fromation of necrotic cores in the growth of tumors: Analytic results, Aata. Math. Scientia, 26 (2006), 781-796. doi: 10.1016/S0252-9602(06)60104-5.

[8]

S. Cui and A. Friedman, Analysis of a mathematical model of the effect of inhibitors on the growth of tumors, Math. Biosci., 164 (2000), 103-137. doi: 10.1016/S0025-5564(99)00063-2.

[9]

S. Cui, Analysis of a free boundary problem modeling tumor growth, Acta. Math. Sinica., 21 (2005), 1071-1082. doi: 10.1007/s10114-004-0483-3.

[10]

S. Cui and S. Xu, Analysis of mathematical models for the growth of tumors with time delays in cell proliferation, J. Math. Anal. Appl., 336 (2007), 523-541. doi: 10.1016/j.jmaa.2007.02.047.

[11]

U. Foryś and M. Bodnar, Time delays in proliferation process for solid avascular tumour, Math. Comput. Modelling, 37 (2003), 1201-1209. doi: 10.1016/S0895-7177(03)80019-5.

[12]

U. Foryś and A. Mokwa-Borkowska, Solid tumour growth analysis of necrotic core formation, Math. Comput. Modelling, 42 (2005), 593-600. doi: 10.1016/j.mcm.2004.06.022.

[13]

U. Foryś and M. Kolev, Time delays in proliferation and apoptosis for solid avascular tumour, Mathematical Modelling of Population Dynamics, 63 (2004), 187-196.

[14]

A. Friedman and F. Reitich, Analysis of a mathematical model for the growth of tumors, J. Math. Biol., 38 (1999), 262-284. doi: 10.1007/s002850050149.

[15]

H. Greenspan, Models for the growth of solid tumor by diffusion, Stud. Appl. Math., 51 (1972), 317-340. doi: 10.1002/sapm1972514317.

[16]

H. Greenspan, On the growth and stability of cell cultures and solid tumors, J. Theor. Biol., 56 (1976), 229-242. doi: 10.1016/S0022-5193(76)80054-9.

[17]

J. Hale, Theory of Functional Differential Equations, 2nd edition, Springer-Verlag, New York, 1977.

[18]

J. Wu, Stationary solutions of a free boundary problem modeling the growth of tumors with Gibbs-Thomson relation, J. Differential Equations, 260 (2016), 5875-5893. doi: 10.1016/j.jde.2015.12.023.

[19]

J. Wu, Analysis of a mathematical model for tumor growth with Gibbs-Thomson relation, J. Math. Anal. Appl., 450 (2017), 532-543. doi: 10.1016/j.jmaa.2017.01.051.

[20]

J. Wu and F. Zhou, Asymptotic behavior of solutions of a free boundary problem modeling tumor spheroid with Gibbs-Thomson relation, J. Differential Equations, 262 (2017), 4907-4930. doi: 10.1016/j.jde.2017.01.012.

[21]

S. Xu, Analysis of a free boundary problem for avascular tumor growth with a periodic supply of nutrients, Discrete and Contin. Dyn. Syst. B., 21 (2016), 997-1008.

[22]

S. XuM. Bai and X. Q. Zhao, Analysis of a solid avascular tumor growth model with time delays in proliferation process, J. Math. Anal. Appl., 391 (2012), 38-47. doi: 10.1016/j.jmaa.2012.02.034.

[1]

Junde Wu, Shangbin Cui. Asymptotic behavior of solutions for parabolic differential equations with invariance and applications to a free boundary problem modeling tumor growth. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2010.26.737

[2]

Shihe Xu. Analysis of a delayed free boundary problem for tumor growth. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2011.15.293

[3]

Tong Yang, Fahuai Yi. Global existence and uniqueness for a hyperbolic system with free boundary. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2001.7.763

[4]

Junde Wu, Shangbin Cui. Asymptotic behavior of solutions of a free boundary problem modelling the growth of tumors with Stokes equations. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2009.24.625

[5]

Shihe Xu, Yinhui Chen, Meng Bai. Analysis of a free boundary problem for avascular tumor growth with a periodic supply of nutrients. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2016.21.997

[6]

Fujun Zhou, Junde Wu, Shangbin Cui. Existence and asymptotic behavior of solutions to a moving boundary problem modeling the growth of multi-layer tumors. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2009.8.1669

[7]

Telma Silva, Adélia Sequeira, Rafael F. Santos, Jorge Tiago. Existence, uniqueness, stability and asymptotic behavior of solutions for a mathematical model of atherosclerosis. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2016.9.343

[8]

Fujun Zhou, Shangbin Cui. Well-posedness and stability of a multidimensional moving boundary problem modeling the growth of tumor cord. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2008.21.929

[9]

Jian Yang. Asymptotic behavior of solutions for competitive models with a free boundary. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2015.35.3253

[10]

Zhenhua Guo, Zilai Li. Global existence of weak solution to the free boundary problem for compressible Navier-Stokes. Kinetic & Related Models, doi: 10.3934/krm.2016.9.75

[11]

Weiqing Xie. A free boundary problem arising from the process of Czochralski crystal growth. Conference Publications, doi: 10.3934/proc.2001.2001.380

[12]

Harunori Monobe. Behavior of radially symmetric solutions for a free boundary problem related to cell motility. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2015.8.989

[13]

Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control & Related Fields, doi: 10.3934/mcrf.2011.1.61

[14]

Chengxia Lei, Yihong Du. Asymptotic profile of the solution to a free boundary problem arising in a shifting climate model. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2017045

[15]

Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic & Related Models, doi: 10.3934/krm.2012.5.129

[16]

Kosuke Ono. Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2003.9.651

[17]

Haitao Yang. On the existence and asymptotic behavior of large solutions for a semilinear elliptic problem in $R^n$. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2005.4.197

[18]

Harunori Monobe, Hirokazu Ninomiya. Multiple existence of traveling waves of a free boundary problem describing cell motility. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2014.19.789

[19]

Tomás Caraballo, Xiaoying Han. A survey on Navier-Stokes models with delays: Existence, uniqueness and asymptotic behavior of solutions. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2015.8.1079

[20]

Zijuan Wen, Meng Fan, Asim M. Asiri, Ebraheem O. Alzahrani, Mohamed M. El-Dessoky, Yang Kuang. Global existence and uniqueness of classical solutions for a generalized quasilinear parabolic equation with application to a glioblastoma growth model. Mathematical Biosciences & Engineering, doi: 10.3934/mbe.2017025

2016 Impact Factor: 0.994

Article outline

[Back to Top]