The paper considers the Dickman equation
$\dot x (t)=-\frac{1}{t}\,x(t-1),$
for $t \to \infty $ . The number theory uses what is called a Dickman (or Dickman -de Bruijn) function, which is the solution to this equation defined by an initial function $x(t)=1$ if $0≤ t≤ 1$ . The Dickman equation has two classes of asymptotically different positive solutions. The paper investigates their asymptotic behaviors in detail. A structure formula describing the asymptotic behavior of all solutions to the Dickman equation is given, an improvement of the well-known asymptotic behavior of the Dickman function, important in number theory, is derived and the problem of whether a given initial function defines dominant or subdominant solution is dealt with.
Citation: |
E. Bach
and R. Peralta
, Asymptotic semismoothness probabilities, Math. Comp., 65 (1996)
, 1701-1715.
doi: 10.1090/S0025-5718-96-00775-2.![]() ![]() ![]() |
|
R. Bellman and K. L. Cooke, Differential-Difference Equations, Academic Press, 1963.
![]() ![]() |
|
H. Bereketoğlu
and M. Pituk
, Asymptotic constancy for nonhomogeneous linear differential equations with unbounded delays, Discrete Contin. Dyn. Syst., (2003)
, 100-107.
![]() ![]() |
|
H. Bereketoğlu
and F. Karakoç
, Asymptotic constancy for impulsive delay differential equations, Dyn. Syst. Appl., 17 (2008)
, 71-83.
![]() ![]() |
|
D. Broadhurst, Dickman polylogarithms and their constants, arXiv: 1004. 0519v1 [math-ph] 4 Apr 2010, 1-11.
![]() |
|
N. G. de Bruijn
, On the number of positive integers $≤ x$ and free of prime factors $> y$, Indag. Math., 54 (1951)
, 50-60.
![]() ![]() |
|
N. G. de Bruijn
, On the number of positive integers $≤ x$ and free of prime factors $> y$ . Ⅱ, Indag. Math., 28 (1966)
, 239-247.
![]() ![]() |
|
N. G. de Bruijn
, The asymptotic behaviour of a function occurring in the theory of primes, J. Indian Math. Soc. (N.S.), 15 (1951)
, 25-32.
![]() ![]() |
|
J. Diblík
, A criterion for existence of positive solutions of systems of retarded functional differential equations, Nonlinear Anal., 38 (1999)
, 327-339.
doi: 10.1016/S0362-546X(98)00199-0.![]() ![]() ![]() |
|
J. Diblík
and N. Koksch
, Positive solutions of the equation $\dot{x}(t)=-c(t)x(t-τ )$ in the critical case, J. Math. Anal. Appl., 250 (2000)
, 635-659.
doi: 10.1006/jmaa.2000.7008.![]() ![]() ![]() |
|
J. Diblík
and M. Růžičková
, Asymptotic behavior of solutions and positive solutions of differential delayed equations, Funct. Differ. Equ., 14 (2007)
, 83-105.
![]() ![]() |
|
K. Dickman
, On the frequency of numbers containing prime factors of a certain relative magnitude, Ark. Mat. Astron. Fys., 22A (1930)
, 1-14.
![]() |
|
I. Györi
and M. Pituk
, Asymptotic formulas for a scalar linear delay differential equation, Electron. J. Qual. Theory Differ. Equ., 2016 (2016)
, 1-14.
![]() ![]() |
|
I. Györi
and M. Pituk
, Stability criteria for linear delay differential equations, J. Differential Equations, 10 (1997)
, 841-852.
![]() ![]() |
|
E. Kozakiewicz
, Über das asymptotische Verhalten der nichtschwingenden Lösungen einer linearen Differentialgleichung mit nacheilendem Argument, Wiss. Z. Humboldt Univ. Berlin, Math. Nat. R., 13 (1964)
, 577-589.
![]() |
|
E. Kozakiewicz
, Über die nichtschwingenden Lösungen einer linearen Differentialgleichung mit nacheilendem Argument, Math. Nachr., 32 (1966)
, 107-113.
doi: 10.1002/mana.19660320112.![]() ![]() ![]() |
|
E. Kozakiewicz
, Zur Abschätzung des Abklingens der nichtschwingenden Lösungen einer linearen Differentialgleichung mit nacheilendem Argument, Wiss. Z. Humboldt Univ. Berlin, Math. Nat. R., 15 (1966)
, 675-676.
![]() ![]() |
|
P. Moree, Integers without large prime factors: From Ramanujan to de Bruijn, Integers, 14A (2014), Paper No. A5, 13 pp.
![]() ![]() |
|
A. D. Myshkis, Linear Differential Equations with Retarded Arguments, Second edition. Izdat. "Nauka", Moscow, 1972.
![]() ![]() |
|
M. Pituk
and G. Röst
, Large time behavior of a linear delay differential equation with asymptotically small coefficient, Bound. Value Probl., 2014 (2014)
, 1-9.
doi: 10.1186/1687-2770-2014-114.![]() ![]() ![]() |
|
V. Ramaswami
, On the number of positive integers less than $x$ and free of prime divisors greated than $x^c$, Bull. Amer. Math. Soc., 55 (1949)
, 1122-1127.
doi: 10.1090/S0002-9904-1949-09337-0.![]() ![]() ![]() |
|
K. P. Rybakowski
, Wa_zewski's principle for retarded functional differential equations, J. Differential Equations, 36 (1980)
, 117-138.
doi: 10.1016/0022-0396(80)90080-7.![]() ![]() ![]() |
|
K. Soundararajan
, An asymptotic expansion related to the Dickman function, The Ramanujan Journal, 29 (2012)
, 25-30, arXiv:1005.3494v1.
doi: 10.1007/s11139-011-9304-3.![]() ![]() |
|
F. I. Wheeler
, Two differential-difference equations arising in number theory, Trans. Amer. Math. Soc., 318 (1990)
, 491-523.
doi: 10.1090/S0002-9947-1990-0963247-X.![]() ![]() ![]() |
|
http://en.wikipedia.org/wiki/Dickman_function.
![]() |
|
Nieuw Archief voor Wiskunde, Problem Section, 4/14 No 3 Nov. 1996, p. 429.
![]() |
|
Nieuw Archief voor Wiskunde, Problem Section, 5/9 No 2 June 2008, p. 232.
![]() |
|
Nieuw Archief voor Wiskunde, Problem Section, 5/11 No 1 March 2010, p. 76.
![]() |