| |
K. D. Argyri, D. D. Dionysiou, F. D. Misichroni and G. S. Stamatakos, Numerical simulation of vascular tumour growth under antiangiogenic treatment: Addressing the paradigm of single-agent bevacizumab therapy with the use of experimental data Biology Direct, 11 (2016), p12.
doi: 10.1186/s13062-016-0114-9.
|
| |
F. Billy, J. Clairambault and O. Fercoq, Optimisation of cancer drug treatments using cell population dynamics, Mathematical Methods and Models in Biomedicine (eds. Ledzewicz U., Schättler H., Friedman A., Kashdan E. ), (2013), 265-309.
doi: 10.1007/978-1-4614-4178-6_10.
|
| |
J. J. Cruz, Feedback Systems, McGraw-Hill, 1972.
|
| |
B. C. Daniels
, Y. J. Chen
, J. P. Sethna
, R. N. Gutenkunst
and C. R. Myers
, Sloppiness, robustness, and evolvability in systems biology, Current Opinion in Biotechnology, 19 (2008)
, 389-395.
doi: 10.1016/j.copbio.2008.06.008.
|
| |
A. D'Onofrio
and A. Gandolfi
, A family of models of angiogenesis and anti-angiogenesis anti-cancer therapy, Mathematical Medicine and Biology, 26 (2009)
, 63-95.
doi: 10.1093/imammb/dqn024.
|
| |
A. d'Onofrio
and A. Gandolfi
, Chemotherapy of vascularised tumours: Role of vessel density and the effect of vascular "pruning", Journal of Theoretical Biology, 264 (2010)
, 253-265.
doi: 10.1016/j.jtbi.2010.01.023.
|
| |
A. D'Onofrio
, U. Ledzewicz
, H. Maurer
and H. Schättler
, On optimal delivery of combination therapy for tumors, Mathematical Biosciences, 222 (2009)
, 13-26.
doi: 10.1016/j.mbs.2009.08.004.
|
| |
H. Enderling
and M. A. Chaplain
, Mathematical modeling of tumor growth and treatment, Current Pharmaceutical Design, 20 (2014)
, 4934-4940.
doi: 10.2174/1381612819666131125150434.
|
| |
J. Folkman
and M. Klagsbrun
, Angiogenic factors, Science, 235 (1987)
, 442-447.
doi: 10.1126/science.2432664.
|
| |
R. N. Gutenkunst
, J. J. Watefall
, F. P. Casey
, K. S. Brown
, C. R. Myers
and J. P. Sethna
, Universally sloppy parameter sensitivities in systems biology models, PLOS Computational Biology, 3 (2007)
, 1871-1878.
doi: 10.1371/journal.pcbi.0030189.
|
| |
P. Hahnfeldt
, D. Panigrahy
, J. Folkman
and L. Hlatky
, Tumor development under angiogenic signaling: A dynamical theory of tumor growth, treatment response, and postvascular dormancy, Cancer Research, 19 (1999)
, 4770-4775.
|
| |
http://drugs.com, Available: 2016-09-30.
|
| |
M. Komorowski
, M. J. Costa
, D. A. Rand
and M. P. H. Stumpf
, Sensitivity, robustness, and identifiability in stochastic chemical kinetics models, PNAS, 108 (2011)
, 8645-8650.
doi: 10.1073/pnas.1015814108.
|
| |
U. Ledzewicz, H. Maurer and H. Schättler, Minimizing Tumor Volume for a Mathematical Model of Anti-Angiogenesis with Linear Pharmacokinetics, Recent Advances in Optimization and its Applications in Engineering (eds. Diehl M., Glineur F., Jarlebring E., Michiels W., (2010), 267-276.
doi: 10.1007/978-3-642-12598-0_23.
|
| |
U. Ledzewicz
and H. Schättler
, Anti-angiogenic therapy in cancer treatment as an optimal control problem, SIAM J. on Control and Optimization, 46 (2007)
, 1052-1079.
doi: 10.1137/060665294.
|
| |
B. K. Mannakee
, A. P. Ragsdale
, M. K. Transtrum
and R. N. Gutenkunst
, Sloppiness and the geometry of parameter space, Uncertainty in Biology: A Computational Modeling Approach (eds. Geris L., Gomez-Cabrero D.), 17 (2015)
, 271-299.
doi: 10.1007/978-3-319-21296-8_11.
|
| |
J. Poleszczuk, P. Hahnfeldt and H. Enderling, Therapeutic implications from sensitivity analysis of tumor angiogenesis models PLoS One, 10(2015), e0120007.
doi: 10.1371/journal.pone.0120007.
|
| |
A. Saltelli, Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models, John
Wiley & Sons, 2004.
|
| |
A. Saltelli
, M. Ratto
, S. Tarantola
and F. Campolongo
, Sensitivity analysis practices: Strategies for model-based inference, Reliability Engineering and System Safety, (2006)
, 1109-1125.
|
| |
H. Schättler and U. Ledzewicz,
Optimal Control for Mathematical Models of Cancer Therapies -an Application of Geometric Methods, Interdisciplinary Applied Mathematics, 42. Springer, New York, 2015.
doi: 10.1007/978-1-4939-2972-6.
|
| |
A. Swierniak
, M. Kimmel
and J. Smieja
, Mathematical modeling as a tool for planning anticancer therapy, European Journal of Pharmacology, 625 (2009)
, 108-121.
doi: 10.1016/j.ejphar.2009.08.041.
|
| |
A. Swierniak, M. Kimmel, J. Smieja, K. Puszynski and K. Psiuk-Maksymowicz,
System Engineering Approach to Planning Anticancer Therapies, Springer, 2016.
doi: 10.1007/978-3-319-28095-0.
|
| |
N. S. Vasudev
and A. R. Reynolds
, Anti-angiogenic therapy for cancer: Current progress, unresolved questions and future directions, Angiogenesis, 17 (2014)
, 471-494.
doi: 10.1007/s10456-014-9420-y.
|
| |
J. Welti
, S. Loges
, S. Dimmeler
and P. Carmeliet
, Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer, The Journal of Clinical Investigation, 8 (2013)
, 3190-3200.
doi: 10.1172/JCI70212.
|
| |
J. Zalevsky
, A. K. Chamberlain
, H. M. Horton
, S. Karki
, I. W. Leung
, T. J. Sproule
, G. A. Lazar
, D. C. Roopenian
and J. R. Desjarlais
, Enhanced antibody half-life improves in vivo activity, Nature Biotechnology, 28 (2010)
, 157-159.
doi: 10.1038/nbt.1601.
|