January  2018, 23(1): 377-385. doi: 10.3934/dcdsb.2018026

Stability of stochastic semigroups and applications to Stein's neuronal model

1. 

Institute of Mathematics, University of Silesia, Bankowa 14, 40-007 Katowice, Poland

2. 

Institute of Mathematics, Polish Academy of Sciences, Bankowa 14, 40-007 Katowice, Poland

* Corresponding author: Ryszard Rudnicki

Received  October 2016 Revised  December 2016 Published  January 2018

Fund Project: This research was partially supported by the National Science Centre (Poland) Grant No. 2014/13/B/ST1/00224

A new theorem on asymptotic stability of stochastic semigroups is given. This theorem is applied to a stochastic semigroup corresponding to Stein's neuronal model. Asymptotic properties of models with and without the refractory period are compared.

Citation: Katarzyna PichÓr, Ryszard Rudnicki. Stability of stochastic semigroups and applications to Stein's neuronal model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 377-385. doi: 10.3934/dcdsb.2018026
References:
[1] A. Bobrowski, Functional Analysis for Probability and Stochastic Processes. An Introduction, Cambridge University Press, Cambridge, 2015. doi: 10.1017/CBO9780511614583.
[2]

A. Bobrowski, Convergence of One-Parameter Operator Semigroups: In Models of Mathematical Biology and Elsewhere New Mathematical Monographs, 30 Cambridge University Press, Cambridge, 2016. doi: 10.1017/CBO9781316480663.

[3]

A. N. Burkitt, A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input, Biol. Cybern., 95 (2006), 1-19. doi: 10.1007/s00422-006-0068-6.

[4]

V. Capasso and D. Bakstein, An Introduction to Continuous-Time Stochastic Processes. Theory, Models and Applications to Finance, Biology and Medicine Birkhäuser, Boston, 2005.

[5]

M. H. A. Davis, Piecewise-deterministic Markov processes: A general class of nondiffusion stochastic models, J. Roy. Statist. Soc. Ser. B, 46 (1984), 353-388.

[6] G. Grimmett and D. Stirzaker, Probability and Random Processes, Oxford University Press, Oxford, 2001.
[7]

P. Hrubý, Analysis of bursting in Stein's model with realistic synapses, Gen. Physiol. Biophys., 14 (1995), 305-311.

[8]

A. Lasota and M. C. Mackey, Chaos, Fractals and Noise. Stochastic Aspects of Dynamics II edition, Springer Applied Mathematical Sciences, 97, New York, 1994. doi: 10.1007/978-1-4612-4286-4.

[9]

J. R. Norris, Markov Chains Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, Cambridge, 1998.

[10]

K. Pichór and R. Rudnicki, Continuous Markov semigroups and stability of transport equations, J. Math. Anal. Appl., 249 (2000), 668-685.

[11]

______, Asymptotic decomposition of substochastic operators and semigroups, J. Math. Anal. Appl. , 436 (2016), 305-321. doi: 10.1016/j.jmaa.2015.12.009.

[12]

_____, Asymptotic decomposition of substochastic semigroups and applications Stochastics and Dynamics 18 (2018) in press. doi: 10.1142/S0219493718500016.

[13]

K. Rajdl and P. Lansky, Stein's neuronal model with pooled renewal input, Biol. Cybern., 109 (2015), 389-399. doi: 10.1007/s00422-015-0650-x.

[14]

R. Rudnicki, Stochastic operators and semigroups and their applications in physics and biology, in J. Banasiak, M. Mokhtar-Kharroubi (eds. ), Evolutionary Equations with Applications in Natural Sciences, Lecture Notes in Mathematics Springer, Heidelberg, 2126 (2015), 255-318.

[15]

R. Rudnicki and M. Tyran-Kamińska, Piecewise deterministic Markov processes in biological models, in: Semigroups of Operators – Theory and Applications, J. Banasiak et al. (eds. ), Springer Proceedings in Mathematics & Statistics 113, Springer, Heidelberg, 2015,235–255. doi: 10.1007/978-3-319-12145-1_15.

[16]

R. B. Stein, Some models of neuronal variability, Biophys. J., 7 (1967), 37-68. doi: 10.1016/S0006-3495(67)86574-3.

[17]

R. B. SteinE. R. Gossen and K. E. Jones, Neuronal variability: Noise or part of the signal?, Nat. Rev. Neurosci., 6 (2005), 389-397. doi: 10.1038/nrn1668.

[18] H. Tuckwell, Introduction to Theoretical Neurobiology, Cambridge University Press, Cambridge, 1988.
[19]

W. J. Wilbur and J. Rinzel, An analysis of Stein's model for stochastic neuronal excitation, Biol. Cybern., 45 (1982), 107-114. doi: 10.1007/BF00335237.

show all references

References:
[1] A. Bobrowski, Functional Analysis for Probability and Stochastic Processes. An Introduction, Cambridge University Press, Cambridge, 2015. doi: 10.1017/CBO9780511614583.
[2]

A. Bobrowski, Convergence of One-Parameter Operator Semigroups: In Models of Mathematical Biology and Elsewhere New Mathematical Monographs, 30 Cambridge University Press, Cambridge, 2016. doi: 10.1017/CBO9781316480663.

[3]

A. N. Burkitt, A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input, Biol. Cybern., 95 (2006), 1-19. doi: 10.1007/s00422-006-0068-6.

[4]

V. Capasso and D. Bakstein, An Introduction to Continuous-Time Stochastic Processes. Theory, Models and Applications to Finance, Biology and Medicine Birkhäuser, Boston, 2005.

[5]

M. H. A. Davis, Piecewise-deterministic Markov processes: A general class of nondiffusion stochastic models, J. Roy. Statist. Soc. Ser. B, 46 (1984), 353-388.

[6] G. Grimmett and D. Stirzaker, Probability and Random Processes, Oxford University Press, Oxford, 2001.
[7]

P. Hrubý, Analysis of bursting in Stein's model with realistic synapses, Gen. Physiol. Biophys., 14 (1995), 305-311.

[8]

A. Lasota and M. C. Mackey, Chaos, Fractals and Noise. Stochastic Aspects of Dynamics II edition, Springer Applied Mathematical Sciences, 97, New York, 1994. doi: 10.1007/978-1-4612-4286-4.

[9]

J. R. Norris, Markov Chains Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, Cambridge, 1998.

[10]

K. Pichór and R. Rudnicki, Continuous Markov semigroups and stability of transport equations, J. Math. Anal. Appl., 249 (2000), 668-685.

[11]

______, Asymptotic decomposition of substochastic operators and semigroups, J. Math. Anal. Appl. , 436 (2016), 305-321. doi: 10.1016/j.jmaa.2015.12.009.

[12]

_____, Asymptotic decomposition of substochastic semigroups and applications Stochastics and Dynamics 18 (2018) in press. doi: 10.1142/S0219493718500016.

[13]

K. Rajdl and P. Lansky, Stein's neuronal model with pooled renewal input, Biol. Cybern., 109 (2015), 389-399. doi: 10.1007/s00422-015-0650-x.

[14]

R. Rudnicki, Stochastic operators and semigroups and their applications in physics and biology, in J. Banasiak, M. Mokhtar-Kharroubi (eds. ), Evolutionary Equations with Applications in Natural Sciences, Lecture Notes in Mathematics Springer, Heidelberg, 2126 (2015), 255-318.

[15]

R. Rudnicki and M. Tyran-Kamińska, Piecewise deterministic Markov processes in biological models, in: Semigroups of Operators – Theory and Applications, J. Banasiak et al. (eds. ), Springer Proceedings in Mathematics & Statistics 113, Springer, Heidelberg, 2015,235–255. doi: 10.1007/978-3-319-12145-1_15.

[16]

R. B. Stein, Some models of neuronal variability, Biophys. J., 7 (1967), 37-68. doi: 10.1016/S0006-3495(67)86574-3.

[17]

R. B. SteinE. R. Gossen and K. E. Jones, Neuronal variability: Noise or part of the signal?, Nat. Rev. Neurosci., 6 (2005), 389-397. doi: 10.1038/nrn1668.

[18] H. Tuckwell, Introduction to Theoretical Neurobiology, Cambridge University Press, Cambridge, 1988.
[19]

W. J. Wilbur and J. Rinzel, An analysis of Stein's model for stochastic neuronal excitation, Biol. Cybern., 45 (1982), 107-114. doi: 10.1007/BF00335237.

Figure 1.  A schematic diagram of the model
[1]

Daoyi Xu, Yumei Huang, Zhiguo Yang. Existence theorems for periodic Markov process and stochastic functional differential equations. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 1005-1023. doi: 10.3934/dcds.2009.24.1005

[2]

Ferenc A. Bartha, Ábel Garab. Necessary and sufficient condition for the global stability of a delayed discrete-time single neuron model. Journal of Computational Dynamics, 2014, 1 (2) : 213-232. doi: 10.3934/jcd.2014.1.213

[3]

Yan Wang, Lei Wang, Yanxiang Zhao, Aimin Song, Yanping Ma. A stochastic model for microbial fermentation process under Gaussian white noise environment. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 381-392. doi: 10.3934/naco.2015.5.381

[4]

Xianlong Fu, Dongmei Zhu. Stability results for a size-structured population model with delayed birth process. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 109-131. doi: 10.3934/dcdsb.2013.18.109

[5]

Feng Zhang, Alice Lubbe, Qishao Lu, Jianzhong Su. On bursting solutions near chaotic regimes in a neuron model. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1363-1383. doi: 10.3934/dcdss.2014.7.1363

[6]

Maria Francesca Carfora, Enrica Pirozzi. Stochastic modeling of the firing activity of coupled neurons periodically driven. Conference Publications, 2015, 2015 (special) : 195-203. doi: 10.3934/proc.2015.0195

[7]

Dongxue Yan, Xianlong Fu. Asymptotic analysis of a spatially and size-structured population model with delayed birth process. Communications on Pure & Applied Analysis, 2016, 15 (2) : 637-655. doi: 10.3934/cpaa.2016.15.637

[8]

Dongxue Yan, Yu Cao, Xianlong Fu. Asymptotic analysis of a size-structured cannibalism population model with delayed birth process. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1975-1998. doi: 10.3934/dcdsb.2016032

[9]

Khalid Latrach, Hatem Megdiche. Time asymptotic behaviour for Rotenberg's model with Maxwell boundary conditions. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 305-321. doi: 10.3934/dcds.2011.29.305

[10]

Marie Levakova. Effect of spontaneous activity on stimulus detection in a simple neuronal model. Mathematical Biosciences & Engineering, 2016, 13 (3) : 551-568. doi: 10.3934/mbe.2016007

[11]

S. M. Crook, M. Dur-e-Ahmad, S. M. Baer. A model of activity-dependent changes in dendritic spine density and spine structure. Mathematical Biosciences & Engineering, 2007, 4 (4) : 617-631. doi: 10.3934/mbe.2007.4.617

[12]

Sanling Yuan, Xuehui Ji, Huaiping Zhu. Asymptotic behavior of a delayed stochastic logistic model with impulsive perturbations. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1477-1498. doi: 10.3934/mbe.2017077

[13]

Massimiliano Tamborrino. Approximation of the first passage time density of a Wiener process to an exponentially decaying boundary by two-piecewise linear threshold. Application to neuronal spiking activity. Mathematical Biosciences & Engineering, 2016, 13 (3) : 613-629. doi: 10.3934/mbe.2016011

[14]

Jonathan E. Rubin, Justyna Signerska-Rynkowska, Jonathan D. Touboul, Alexandre Vidal. Wild oscillations in a nonlinear neuron model with resets: (Ⅱ) Mixed-mode oscillations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 4003-4039. doi: 10.3934/dcdsb.2017205

[15]

Frederik Riis Mikkelsen. A model based rule for selecting spiking thresholds in neuron models. Mathematical Biosciences & Engineering, 2016, 13 (3) : 569-578. doi: 10.3934/mbe.2016008

[16]

Françoise Pène. Asymptotic of the number of obstacles visited by the planar Lorentz process. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 567-587. doi: 10.3934/dcds.2009.24.567

[17]

Wolfgang Arendt, Rafe Mazzeo. Friedlander's eigenvalue inequalities and the Dirichlet-to-Neumann semigroup. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2201-2212. doi: 10.3934/cpaa.2012.11.2201

[18]

Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325

[19]

Telma Silva, Adélia Sequeira, Rafael F. Santos, Jorge Tiago. Existence, uniqueness, stability and asymptotic behavior of solutions for a mathematical model of atherosclerosis. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 343-362. doi: 10.3934/dcdss.2016.9.343

[20]

Kentarou Fujie. Global asymptotic stability in a chemotaxis-growth model for tumor invasion. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 203-209. doi: 10.3934/dcdss.2020011

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (77)
  • HTML views (528)
  • Cited by (0)

Other articles
by authors

[Back to Top]