The paper investigates the navigation problem of following a moving target, using a mathematical model described by a system of differential equations with random parameters. The differential equations, which employ controls for following the target, are solved by a new approach using moment equations. Simulations are presented to test effectiveness of the approach.
Citation: |
A. G. Aleksandrov, Optimal and Adaptive Systems, Nauka, Moscow, 1989.
![]() |
|
J. Diblík
, I. Dzhalladova
, M. Michalková
and M. Růžičková
, Modeling of applied problems by stochastic systems and their analysis using the moment equations, Adv. Difference Equ., 2013 (2013)
, 12 pp.
doi: 10.1186/1687-1847-2013-152.![]() ![]() ![]() |
|
J. Diblík, I. Dzhalladova, M. Michalková and M. Růžičková, Moment equations in modeling a stable foreign currency exchange market in conditions of uncertainty Abstr. Appl. Anal. 2013 (2013), Art. ID 172847, 11 pp.
doi: 10.1155/2013/172847.![]() ![]() ![]() |
|
I. A. Dzhalladova, Optimization of Stochastic System, KNEU, Kiev, 2005.
![]() |
|
I. Dzhalladova
, M. Růžičková
, M. Štoudková
and M. Růžičková
, Stability of the zero solution of nonlinear differential equations under the influence of white noise, Adv. Difference Equ., 2015 (2015)
, 11 pp.
doi: 10.1186/s13662-015-0482-y.![]() ![]() ![]() |
|
A. I. Egorov, Optimal Control with Linear Systems, KNEU, Kiev, 1988.
![]() |
|
H. Gao
and C. Sun
, Well-posedness of stochastic primitive equations with multiplicative noise in three dimensions, Discrete Continuous Dynam. Systems -B, 21 (2016)
, 3053-3073.
doi: 10.3934/dcdsb.2016087.![]() ![]() ![]() |
|
C. G. Guo
, C. X. Guo
, S. Ahmed
and F. X. Liu
, Moment stability for nonlinear stochastic growth kinetics of breast cancer stem cells with time-delays, Discrete Continuous Dynam. Systems -B, 21 (2016)
, 2473-2489.
doi: 10.3934/dcdsb.2016056.![]() ![]() ![]() |
|
J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes, Springer-Verlag, New York, 1987.
doi: 10.1007/978-3-662-02514-7.![]() ![]() ![]() |
|
M. Růžičková and I. Dzhalladova, The optimization of solutions of the dynamic systems with random structure Abstr. Appl. Anal. 2011 (2011), Art. ID 486714, 18 pp.
doi: 10.1155/2011/486714.![]() ![]() ![]() |
|
M. Šagát,
Stochastic Differential Equations and their Applications Mgr. thesis University of Žilina, Žilina -2814420132009,2013.
![]() |
|
K. G. Valeev and I. Dzhalladova, Optimization of Random Processes, KNEU, Kiev, 2006.
![]() |
Distribution of forces acting on the missile
The mean value of the process s(t) with parameters λ and p: λ = 0.01; p = 0.1, 0.2, ..., 1; s(0) = 0, 4, 8, ..., 200
The mean value of the process s(t) with parameters λ and p: λ = 0.01, 0.02, ..., 0.2; p = 0.1, 0.2, ..., 1; s(0) = 0, 4, 8, ..., 200
The mean value of the process
The mean value of the process
The mean value
The mean value