January 2018, 23(1): 487-492. doi: 10.3934/dcdsb.2018033

On homoclinic solutions for a second order difference equation with p-Laplacian

Institute of Mathematics, Lodz University of Technology, Wolczanska 215, 90-924 Lodz, Poland

Received  July 2016 Revised  September 2016 Published  January 2018

In this paper, we obtain conditions under which the difference equation
$-Δ ≤ft( a(k)φ _{p}(Δ u(k-1))) +b(k)φ_{p}(u(k))=λ f(k, u(k)), \;\;k∈\mathbb{Z}, $
has infinitely many homoclinic solutions. A variant of the fountain theorem is utilized in the proof of our theorem. Some known results in the literature are extended and complemented.
Citation: Robert Stegliński. On homoclinic solutions for a second order difference equation with p-Laplacian. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 487-492. doi: 10.3934/dcdsb.2018033
References:
[1]

G. Bonanno and G. Molica Bisci, Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl., 2009 (2009), Art. ID 670675, 20 pp.

[2]

A. Iannizzotto and S. Tersian, Multiple homoclinic solutions for the discrete p-Laplacian via critical point theory, J. Math. Anal. Appl., 403 (2013), 173-182. doi: 10.1016/j.jmaa.2013.02.011.

[3]

L. Kong, Homoclinic solutions for a second order difference equation with p-Laplacian, Appl. Math. Comput., 247 (2014), 1103-1121. doi: 10.1016/j.amc.2014.09.069.

[4]

L. Kong, Homoclinic solutions for a higher order difference equation with p-Laplacian, Indag. Math., 27 (2016), 124-146. doi: 10.1016/j.indag.2015.08.007.

[5]

S. Liu, On superlinear problems without the Ambrosetti and Rabinowitz condition, Nonlinear Anal., 73 (2010), 788-795. doi: 10.1016/j.na.2010.04.016.

[6]

B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math., 113 (2000), 401-410. doi: 10.1016/S0377-0427(99)00269-1.

[7]

R. Stegliński,, On sequences of large homoclinic solutions for a difference equations on the integers, Adv. Difference Equ., 2016 (2016), 11pp. doi: 10.1186/s13662-017-1344-6.

[8]

R. Stegliński, On sequences of large homoclinic solutions for a difference equations on the integers involving oscillatory nonlinearities, Electron. J. Qual. Theory Differ. Equ., 35 (2016), 1-11.

[9]

G. Sun and A. Mai, Infinitely many homoclinic solutions for second order nonlinear difference equations with p-Laplacian The Scientific World Journal 2014 (2014), Article ID 276372, 6 pages. doi: 10.1155/2014/276372.

show all references

References:
[1]

G. Bonanno and G. Molica Bisci, Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl., 2009 (2009), Art. ID 670675, 20 pp.

[2]

A. Iannizzotto and S. Tersian, Multiple homoclinic solutions for the discrete p-Laplacian via critical point theory, J. Math. Anal. Appl., 403 (2013), 173-182. doi: 10.1016/j.jmaa.2013.02.011.

[3]

L. Kong, Homoclinic solutions for a second order difference equation with p-Laplacian, Appl. Math. Comput., 247 (2014), 1103-1121. doi: 10.1016/j.amc.2014.09.069.

[4]

L. Kong, Homoclinic solutions for a higher order difference equation with p-Laplacian, Indag. Math., 27 (2016), 124-146. doi: 10.1016/j.indag.2015.08.007.

[5]

S. Liu, On superlinear problems without the Ambrosetti and Rabinowitz condition, Nonlinear Anal., 73 (2010), 788-795. doi: 10.1016/j.na.2010.04.016.

[6]

B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math., 113 (2000), 401-410. doi: 10.1016/S0377-0427(99)00269-1.

[7]

R. Stegliński,, On sequences of large homoclinic solutions for a difference equations on the integers, Adv. Difference Equ., 2016 (2016), 11pp. doi: 10.1186/s13662-017-1344-6.

[8]

R. Stegliński, On sequences of large homoclinic solutions for a difference equations on the integers involving oscillatory nonlinearities, Electron. J. Qual. Theory Differ. Equ., 35 (2016), 1-11.

[9]

G. Sun and A. Mai, Infinitely many homoclinic solutions for second order nonlinear difference equations with p-Laplacian The Scientific World Journal 2014 (2014), Article ID 276372, 6 pages. doi: 10.1155/2014/276372.

[1]

Rossella Bartolo, Anna Maria Candela, Addolorata Salvatore. Infinitely many radial solutions of a non--homogeneous $p$--Laplacian problem. Conference Publications, 2013, 2013 (special) : 51-59. doi: 10.3934/proc.2013.2013.51

[2]

Petru Jebelean. Infinitely many solutions for ordinary $p$-Laplacian systems with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2008, 7 (2) : 267-275. doi: 10.3934/cpaa.2008.7.267

[3]

Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Positive solutions for p-Laplacian equations with concave terms. Conference Publications, 2011, 2011 (Special) : 922-930. doi: 10.3934/proc.2011.2011.922

[4]

Adam Lipowski, Bogdan Przeradzki, Katarzyna Szymańska-Dębowska. Periodic solutions to differential equations with a generalized p-Laplacian. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2593-2601. doi: 10.3934/dcdsb.2014.19.2593

[5]

Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069

[6]

John R. Graef, Lingju Kong, Min Wang. Existence of homoclinic solutions for second order difference equations with $p$-laplacian. Conference Publications, 2015, 2015 (special) : 533-539. doi: 10.3934/proc.2015.0533

[7]

Magdalena Nockowska-Rosiak, Piotr Hachuła, Ewa Schmeidel. Existence of uncountably many asymptotically constant solutions to discrete nonlinear three-dimensional system with $p$-Laplacian. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 369-375. doi: 10.3934/dcdsb.2018025

[8]

Dimitri Mugnai. Bounce on a p-Laplacian. Communications on Pure & Applied Analysis, 2003, 2 (3) : 371-379. doi: 10.3934/cpaa.2003.2.371

[9]

Zalman Balanov, Carlos García-Azpeitia, Wieslaw Krawcewicz. On variational and topological methods in nonlinear difference equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2813-2844. doi: 10.3934/cpaa.2018133

[10]

Shanming Ji, Yutian Li, Rui Huang, Xuejing Yin. Singular periodic solutions for the p-laplacian ina punctured domain. Communications on Pure & Applied Analysis, 2017, 16 (2) : 373-392. doi: 10.3934/cpaa.2017019

[11]

Maya Chhetri, D. D. Hai, R. Shivaji. On positive solutions for classes of p-Laplacian semipositone systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 1063-1071. doi: 10.3934/dcds.2003.9.1063

[12]

Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595

[13]

Elisa Calzolari, Roberta Filippucci, Patrizia Pucci. Dead cores and bursts for p-Laplacian elliptic equations with weights. Conference Publications, 2007, 2007 (Special) : 191-200. doi: 10.3934/proc.2007.2007.191

[14]

Liping Wang, Chunyi Zhao. Infinitely many solutions for nonlinear Schrödinger equations with slow decaying of potential. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1707-1731. doi: 10.3934/dcds.2017071

[15]

Liang Zhang, X. H. Tang, Yi Chen. Infinitely many solutions for a class of perturbed elliptic equations with nonlocal operators. Communications on Pure & Applied Analysis, 2017, 16 (3) : 823-842. doi: 10.3934/cpaa.2017039

[16]

Miao Du, Lixin Tian. Infinitely many solutions of the nonlinear fractional Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3407-3428. doi: 10.3934/dcdsb.2016104

[17]

Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040

[18]

Yansheng Zhong, Yongqing Li. On a p-Laplacian eigenvalue problem with supercritical exponent. Communications on Pure & Applied Analysis, 2019, 18 (1) : 227-236. doi: 10.3934/cpaa.2019012

[19]

Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Robin problems for the p-Laplacian with gradient dependence. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 287-295. doi: 10.3934/dcdss.2019020

[20]

Francesca Colasuonno, Benedetta Noris. A p-Laplacian supercritical Neumann problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3025-3057. doi: 10.3934/dcds.2017130

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (34)
  • HTML views (59)
  • Cited by (0)

Other articles
by authors

[Back to Top]