• Previous Article
    Cascades of alternating smooth bifurcations and border collision bifurcations with singularity in a family of discontinuous linear-power maps
  • DCDS-B Home
  • This Issue
  • Next Article
    Long-time behavior of a class of nonlocal partial differential equations
2018, 23(2): 731-747. doi: 10.3934/dcdsb.2018040

Extinction and the Allee effect in an age structured Ricker population model with inter-stage interaction

Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, P.O. Box 842014, Richmond, Virginia 23284-2014, USA

* Corresponding author: Nika Lazaryan

Received  October 2016 Revised  September 2017 Published  March 2018

We study the evolution in discrete time of certain age-structured populations, such as adults and juveniles, with a Ricker fitness function. We determine conditions for the convergence of orbits to the origin (extinction) in the presence of the Allee effect and time-dependent vital rates. We show that when stages interact, they may survive in the absence of interior fixed points, a surprising situation that is impossible without inter-stage interactions. We also examine the shift in the interior Allee equilibrium caused by the occurrence of interactions between stages and find that the extinction or Allee threshold does not extend to the new boundaries set by the shift in equilibrium, i.e. no interior equilibria are on the extinction threshold.

Citation: Nika Lazaryan, Hassan Sedaghat. Extinction and the Allee effect in an age structured Ricker population model with inter-stage interaction. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 731-747. doi: 10.3934/dcdsb.2018040
References:
[1]

A. Ackleh and S. Jang, A discrete two-stage population model: Continuous versus seasonal reproduction, J. Difference Eq.Appl, 13 (2007), 261-274. doi: 10.1080/10236190601079217.

[2]

W. C. Allee, The Social Life of Animals, William Heinman, London, 1938.

[3]

W. C. Allee, A. E. Emerson, O. Park, T. Park and K. P. Schmidt, Principles of Animal Ecology, WB Saunders, Philadelphia, 1949.

[4]

L. BerecE. Angulo and F. Courchamp, Multiple Allee effects and population management, TRENDS in Ecol. Evol., 22 (2006), 185-191. doi: 10.1016/j.tree.2006.12.002.

[5]

F. Courchamp, L. Berec and J. Gascoigne, Allee Effects in Ecology and Conservation, Oxford University Press, Oxford, 2008. doi: 10.1093/acprof:oso/9780198570301.001.0001.

[6]

J. M. Cushing, Oscillations in age-structured population models with an Allee effect, J. Comput. Appl. Math., 52 (1994), 71-80. doi: 10.1016/0377-0427(94)90349-2.

[7]

J. M. Cushing, An Introduction to Structured Population Dynamics, CBMS-NSF Regional Conference Series in Applied Mathematics, 1998, SIAM, Philadelphia.

[8]

J. M. Cushing, A juvenile-adult model with periodic vital rates, J. Math Biol, 53 (2006), 520-539.

[9]

J. M. Cushing, Backward bifurcations and strong Allee effects in matrix models for the dynamics of structured populations, J. Biol. Dyn., 8 (2014), 57-73. doi: 10.1007/s00285-006-0382-6.

[10]

J. M. Cushing and J. T. Hudson, Evolutionary dynamics and strong Allee effects, J. Biol. Dyn., 6 (2012), 941-958.

[11]

S. N. Elaydi and R. J. Sacker, Basin of attraction of periodic orbits of maps on the real lin, J. Difference Eq. Appl., 10 (2004), 881-888. doi: 10.1080/10236190410001731443.

[12]

S. N. Elaydi and R. J. Sacker, Population models with Allee effects: A new model, J. Biol. Dyn., 4 (2010), 397-408. doi: 10.1080/17513750903377434.

[13]

S. R. Jang, Allee effects in discrete-time host-parasitoid model, J. Difference Eq. Appl., 12 (2006), 165-181. doi: 10.1080/10236190500539238.

[14]

N. Lazaryan and H. Sedaghat Dynamics of planar systems that model stage-structured populations, Discr. Dyn. Nature Society,, (2015), Article ID 137182, 14pp. doi: 10.1155/2015/137182.

[15]

N. Lazaryan and H. Sedaghat, Extinction, periodicity and multistability in a Ricker model of stage-structured populations, J. Difference Eq. Appl., 22 (2016), 645-670.

[16]

N. Lazaryan and H. Sedaghat, Periodic and non-periodic solutions in a Ricker-type secondorder equation with periodic parameters, J. Difference Eq. Appl., 22 (2016), 1199-1223. doi: 10.1080/10236198.2016.1187142.

[17]

W. Z. Lidicker, The Allee effect: Its history and future importance, Open Ecol. J., 3 (2010), 71-82.

[18]

G. Livadiotis and S. Elaydi, General Allee effect in two-species population biology, J. Biol. Dyn, 6 (2012), 959-973. doi: 10.1080/17513758.2012.700075.

[19]

E. Liz and P. Pilarczyk, Global dynamics in a stage-sturctured discrete-time population model with harvesting, J. Theor. Biol., 297 (2012), 148-165. doi: 10.1016/j.jtbi.2011.12.012.

[20]

R. LuisS. N. Elaydi and H. Oliveira, Non-autonomous periodic systems with Allee effects, J. Difference Eq. Appl., 16 (2010), 1179-1196. doi: 10.1080/10236190902794951.

[21]

S. J. Schreiber, Allee effects, extinctions, and chaotic transients in simple population models, Theor. Popul. Biol., 64 (2003), 201-209. doi: 10.1016/S0040-5809(03)00072-8.

[22]

H. Sedaghat, Folding, cycles and chaos in planar systems, J. Difference Eq. Appl., 21 (2015), 1-15. doi: 10.1080/10236198.2014.974585.

[23]

A. Yakubu, Multiple attractors in juvenile-adult single species models, J. Difference Eq. Appl., 9 (2007), 1083-1098. doi: 10.1080/1023619031000146887.

[24]

E. F. ZipkinC. E. KraftE. G. Cooch and P. J. Sullivan, When can efforts to control nuisance and invasive species backfire?, Ecol. Appl., 19 (2009), 1585-1595. doi: 10.1890/08-1467.1.

show all references

References:
[1]

A. Ackleh and S. Jang, A discrete two-stage population model: Continuous versus seasonal reproduction, J. Difference Eq.Appl, 13 (2007), 261-274. doi: 10.1080/10236190601079217.

[2]

W. C. Allee, The Social Life of Animals, William Heinman, London, 1938.

[3]

W. C. Allee, A. E. Emerson, O. Park, T. Park and K. P. Schmidt, Principles of Animal Ecology, WB Saunders, Philadelphia, 1949.

[4]

L. BerecE. Angulo and F. Courchamp, Multiple Allee effects and population management, TRENDS in Ecol. Evol., 22 (2006), 185-191. doi: 10.1016/j.tree.2006.12.002.

[5]

F. Courchamp, L. Berec and J. Gascoigne, Allee Effects in Ecology and Conservation, Oxford University Press, Oxford, 2008. doi: 10.1093/acprof:oso/9780198570301.001.0001.

[6]

J. M. Cushing, Oscillations in age-structured population models with an Allee effect, J. Comput. Appl. Math., 52 (1994), 71-80. doi: 10.1016/0377-0427(94)90349-2.

[7]

J. M. Cushing, An Introduction to Structured Population Dynamics, CBMS-NSF Regional Conference Series in Applied Mathematics, 1998, SIAM, Philadelphia.

[8]

J. M. Cushing, A juvenile-adult model with periodic vital rates, J. Math Biol, 53 (2006), 520-539.

[9]

J. M. Cushing, Backward bifurcations and strong Allee effects in matrix models for the dynamics of structured populations, J. Biol. Dyn., 8 (2014), 57-73. doi: 10.1007/s00285-006-0382-6.

[10]

J. M. Cushing and J. T. Hudson, Evolutionary dynamics and strong Allee effects, J. Biol. Dyn., 6 (2012), 941-958.

[11]

S. N. Elaydi and R. J. Sacker, Basin of attraction of periodic orbits of maps on the real lin, J. Difference Eq. Appl., 10 (2004), 881-888. doi: 10.1080/10236190410001731443.

[12]

S. N. Elaydi and R. J. Sacker, Population models with Allee effects: A new model, J. Biol. Dyn., 4 (2010), 397-408. doi: 10.1080/17513750903377434.

[13]

S. R. Jang, Allee effects in discrete-time host-parasitoid model, J. Difference Eq. Appl., 12 (2006), 165-181. doi: 10.1080/10236190500539238.

[14]

N. Lazaryan and H. Sedaghat Dynamics of planar systems that model stage-structured populations, Discr. Dyn. Nature Society,, (2015), Article ID 137182, 14pp. doi: 10.1155/2015/137182.

[15]

N. Lazaryan and H. Sedaghat, Extinction, periodicity and multistability in a Ricker model of stage-structured populations, J. Difference Eq. Appl., 22 (2016), 645-670.

[16]

N. Lazaryan and H. Sedaghat, Periodic and non-periodic solutions in a Ricker-type secondorder equation with periodic parameters, J. Difference Eq. Appl., 22 (2016), 1199-1223. doi: 10.1080/10236198.2016.1187142.

[17]

W. Z. Lidicker, The Allee effect: Its history and future importance, Open Ecol. J., 3 (2010), 71-82.

[18]

G. Livadiotis and S. Elaydi, General Allee effect in two-species population biology, J. Biol. Dyn, 6 (2012), 959-973. doi: 10.1080/17513758.2012.700075.

[19]

E. Liz and P. Pilarczyk, Global dynamics in a stage-sturctured discrete-time population model with harvesting, J. Theor. Biol., 297 (2012), 148-165. doi: 10.1016/j.jtbi.2011.12.012.

[20]

R. LuisS. N. Elaydi and H. Oliveira, Non-autonomous periodic systems with Allee effects, J. Difference Eq. Appl., 16 (2010), 1179-1196. doi: 10.1080/10236190902794951.

[21]

S. J. Schreiber, Allee effects, extinctions, and chaotic transients in simple population models, Theor. Popul. Biol., 64 (2003), 201-209. doi: 10.1016/S0040-5809(03)00072-8.

[22]

H. Sedaghat, Folding, cycles and chaos in planar systems, J. Difference Eq. Appl., 21 (2015), 1-15. doi: 10.1080/10236198.2014.974585.

[23]

A. Yakubu, Multiple attractors in juvenile-adult single species models, J. Difference Eq. Appl., 9 (2007), 1083-1098. doi: 10.1080/1023619031000146887.

[24]

E. F. ZipkinC. E. KraftE. G. Cooch and P. J. Sullivan, When can efforts to control nuisance and invasive species backfire?, Ecol. Appl., 19 (2009), 1585-1595. doi: 10.1890/08-1467.1.

Figure 1.  $E_{0}$ with $\lambda =3$, $a = 0.7936$, $b = 0.0891$, $s^{\prime} = 1$
Figure 2.  $E$ (shaded) and its complement for $\lambda =3$, $a = 0.7936$, $b = 0.0891$, $s^{\prime} = 1$
Figure 3.  $E$ for $\lambda =2$, $a = 1.1$, $s^{\prime} = 1$ and two different values of $b$
Table 1.  A summary of results
ConditionsOutcomes and CommentsReferences
General$x_{0}, x_{1}<\rho $Extinction for all possible parameter values ifThrm 1(b)
initial values are bounded by $\rho $; $ \lbrack 0, \rho )^{2}\subset E_{0}$
(9)Extinction for all positive initial values; $ E_{0}=[0, \infty )^{2}$Thrm 1(c)
No inter-stage interactions(23)Extinction for all positive initial values; $E_{0}=[0, \infty )^{2}$Cor 9(a)
(24)Extinction with $ E_{0}\subset \lbrack 0, u^{\ast })\times \lbrack 0, u^{\ast }/s^{\prime })$Cor 9(b)
(24), (25)Survival for $x_{0}, x_{1}\in \lbrack u^{\ast }, \bar{u}]^{2}$Cor 9(c)
Survival if $x_{0}=u^{\ast }, x_{1}=0$ or $ x_{1}=u^{\ast }, x_{0}=0$Cor 9(d)
With inter-stage interactions(23)Extinction for all positive initial values; $E_{0}=[0, \infty )^{2}$Cor 15(a)
(33)No positive equilibria but $E_{0}\not=[0, \infty )^{2}$; i.e. survivalCor 15(b)
is possible with some positive initial values!
(31), (34)Extinction occurs from some initial values, survivalOpen problems
from others; nontrivial basins (see Figures 1-3)
ConditionsOutcomes and CommentsReferences
General$x_{0}, x_{1}<\rho $Extinction for all possible parameter values ifThrm 1(b)
initial values are bounded by $\rho $; $ \lbrack 0, \rho )^{2}\subset E_{0}$
(9)Extinction for all positive initial values; $ E_{0}=[0, \infty )^{2}$Thrm 1(c)
No inter-stage interactions(23)Extinction for all positive initial values; $E_{0}=[0, \infty )^{2}$Cor 9(a)
(24)Extinction with $ E_{0}\subset \lbrack 0, u^{\ast })\times \lbrack 0, u^{\ast }/s^{\prime })$Cor 9(b)
(24), (25)Survival for $x_{0}, x_{1}\in \lbrack u^{\ast }, \bar{u}]^{2}$Cor 9(c)
Survival if $x_{0}=u^{\ast }, x_{1}=0$ or $ x_{1}=u^{\ast }, x_{0}=0$Cor 9(d)
With inter-stage interactions(23)Extinction for all positive initial values; $E_{0}=[0, \infty )^{2}$Cor 15(a)
(33)No positive equilibria but $E_{0}\not=[0, \infty )^{2}$; i.e. survivalCor 15(b)
is possible with some positive initial values!
(31), (34)Extinction occurs from some initial values, survivalOpen problems
from others; nontrivial basins (see Figures 1-3)
[1]

Elena Braverman, Alexandra Rodkina. Stochastic difference equations with the Allee effect. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5929-5949. doi: 10.3934/dcds.2016060

[2]

Jim M. Cushing. The evolutionary dynamics of a population model with a strong Allee effect. Mathematical Biosciences & Engineering, 2015, 12 (4) : 643-660. doi: 10.3934/mbe.2015.12.643

[3]

Dianmo Li, Zhen Zhang, Zufei Ma, Baoyu Xie, Rui Wang. Allee effect and a catastrophe model of population dynamics. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 629-634. doi: 10.3934/dcdsb.2004.4.629

[4]

Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129

[5]

Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 973-993. doi: 10.3934/dcdss.2017051

[6]

Yi Yang, Robert J. Sacker. Periodic unimodal Allee maps, the semigroup property and the $\lambda$-Ricker map with Allee effect. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 589-606. doi: 10.3934/dcdsb.2014.19.589

[7]

Eduardo Liz, Alfonso Ruiz-Herrera. Delayed population models with Allee effects and exploitation. Mathematical Biosciences & Engineering, 2015, 12 (1) : 83-97. doi: 10.3934/mbe.2015.12.83

[8]

E. Cabral Balreira, Saber Elaydi, Rafael Luís. Local stability implies global stability for the planar Ricker competition model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 323-351. doi: 10.3934/dcdsb.2014.19.323

[9]

Gregory Berkolaiko, Cónall Kelly, Alexandra Rodkina. Sharp pathwise asymptotic stability criteria for planar systems of linear stochastic difference equations. Conference Publications, 2011, 2011 (Special) : 163-173. doi: 10.3934/proc.2011.2011.163

[10]

Chuang Xu. Strong Allee effect in a stochastic logistic model with mate limitation and stochastic immigration. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2321-2336. doi: 10.3934/dcdsb.2016049

[11]

J. Leonel Rocha, Abdel-Kaddous Taha, Danièle Fournier-Prunaret. Explosion birth and extinction: Double big bang bifurcations and Allee effect in Tsoularis-Wallace's growth models. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3131-3163. doi: 10.3934/dcdsb.2015.20.3131

[12]

Bruno Buonomo, Deborah Lacitignola. On the stabilizing effect of cannibalism in stage-structured population models. Mathematical Biosciences & Engineering, 2006, 3 (4) : 717-731. doi: 10.3934/mbe.2006.3.717

[13]

Qizhen Xiao, Binxiang Dai. Heteroclinic bifurcation for a general predator-prey model with Allee effect and state feedback impulsive control strategy. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1065-1081. doi: 10.3934/mbe.2015.12.1065

[14]

Wenjie Ni, Mingxin Wang. Dynamical properties of a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3409-3420. doi: 10.3934/dcdsb.2017172

[15]

Eduardo González-Olivares, Betsabé González-Yañez, Jaime Mena-Lorca, José D. Flores. Uniqueness of limit cycles and multiple attractors in a Gause-type predator-prey model with nonmonotonic functional response and Allee effect on prey. Mathematical Biosciences & Engineering, 2013, 10 (2) : 345-367. doi: 10.3934/mbe.2013.10.345

[16]

Gennadi M. Henkin, Victor M. Polterovich. A difference-differential analogue of the Burgers equations and some models of economic development. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 697-728. doi: 10.3934/dcds.1999.5.697

[17]

Qihua Huang, Hao Wang. A toxin-mediated size-structured population model: Finite difference approximation and well-posedness. Mathematical Biosciences & Engineering, 2016, 13 (4) : 697-722. doi: 10.3934/mbe.2016015

[18]

Azmy S. Ackleh, Vinodh K. Chellamuthu, Kazufumi Ito. Finite difference approximations for measure-valued solutions of a hierarchically size-structured population model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 233-258. doi: 10.3934/mbe.2015.12.233

[19]

Kousuke Kuto, Yoshio Yamada. On limit systems for some population models with cross-diffusion. Discrete & Continuous Dynamical Systems - B, 2012, 17 (8) : 2745-2769. doi: 10.3934/dcdsb.2012.17.2745

[20]

Tzy-Wei Hwang, Feng-Bin Wang. Dynamics of a dengue fever transmission model with crowding effect in human population and spatial variation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 147-161. doi: 10.3934/dcdsb.2013.18.147

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (21)
  • HTML views (41)
  • Cited by (0)

Other articles
by authors

[Back to Top]