doi: 10.3934/dcdsb.2018070

Algebraic limit cycles for quadratic polynomial differential systems

1. 

Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain

2. 

Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal

* Corresponding author: Jaume Llibre

Received  July 2017 Published  January 2018

We prove that for a quadratic polynomial differential system having three pairs of diametrally opposite equilibrium points at infinity that are positively rationally independent, has at most one algebraic limit cycle. Our result provides a partial positive answer to the following conjecture: Quadratic polynomial differential systems have at most one algebraic limit cycle.

Citation: Jaume Llibre, Claudia Valls. Algebraic limit cycles for quadratic polynomial differential systems. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2018070
References:
[1]

J. ChavarrigaH. Giacomini and M. Grau, Necessary conditions for the existence of invariant algebraic curves for planar polynomial systems, Bull. Sci. Math., 129 (2005), 99-126. doi: 10.1016/j.bulsci.2004.09.002.

[2]

J. ChavarrigaH. Giacomini and J. Llibre, Uniqueness of algebraic limit cycles for quadratic systems, J. Math. Anal. Appl., 261 (2001), 85-99. doi: 10.1006/jmaa.2001.7476.

[3]

J. Chavarriga and J. Llibre, Invariant algebraic curves and rational first integrals planar polynomial vector fields, J. Differential Equations, 169 (2001), 1-16. doi: 10.1006/jdeq.2000.3891.

[4]

J. ChavarrigaJ. Llibre and J. Sorolla, Algebraic limit cycles of degree four for quadratic systems, J. Differential Equations, 200 (2004), 206-244. doi: 10.1016/j.jde.2004.01.003.

[5]

L. S. Chen, Uniqueness of the limit cycle of a quadratic system in the plane, Acta Math. Sinica, 20 (1977), 11-13.

[6]

C. Christopher, Invariant algebraic curves and conditions for a center, Proc. Roy. Soc. Edinburhgh, 124A (1994), 1209-1229. doi: 10.1017/S0308210500030213.

[7]

C. ChristopherJ. Llibre and G. Swirszcz, Invariant algebraic curves of large degree for quadratic systems, J. Math. Anal. Appl., 303 (2005), 206-244. doi: 10.1016/j.jmaa.2004.08.042.

[8]

B. Coll and J. Llibre, Limit cycles for a quadratic systems with an invariant straight line and some evolution of phase portraits, Colloquia Mathematica Societatis Janos Bolyai, 53 (1988), 111-123.

[9]

B. CollG. Gasull and J. Llibre, Quadratic systems with a unique finite rest point, Publicacions Matematiques, 32 (1988), 199-259. doi: 10.5565/PUBLMAT_32288_08.

[10]

W. A. Coppel, Some quadratic systems with at most one limit cycle, Dynamics Reported, 2 (1989), 61-88.

[11]

F. DumortierJ. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Universitext, Springer-Verlag, (2006).

[12]

R. M. Evdokimenco, Construction of algebraic paths and the qualitative investigation in the large of the properties of integral curves of a system of differential equations, Differential Equations, 6 (1970), 1349-1358.

[13]

R. M. Evdokimenco, Behavior of integral curves of a dynamic system, Differential Equations, 9 (1974), 1095-1103.

[14]

R. M. Evdokimenco, Investigation in the large of a dynamic systems with a given integral curve, Differential Equations, 15 (1979), 215-221.

[15]

V. F. Filiptsov, Algebraic limit cycles, Differencial?nye Uravnenija, 9 (1973), 1281-1288.

[16]

D. Hilbert, Mathematische Probleme, in Lecture, Second Internat. Congr. Math., Paris, 1900, in Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl., 1900, pp. 253-297; English transl. in Bull. Amer. Math. Soc., 8 (1902), 437-479.

[17]

J. Llibre, Integrability of polynomial differential systems, in Handbook of Differential Equations, Ordinary Differential Equations, Eds. A. Cañada, P. Drabek and A. Fonda, Elsevier, 1 (2004), 437-479.

[18]

J. Llibre and D. Schlomiuk, On the limit cycles bifurcating from an ellipse of a quadratic center, Discrete Contin. Dyn. Syst. Series B, 35 (2015), 1091-1102.

[19]

J. Llibre and G. Swirszcz, Classification of quadratic systems admitting the existence of an algebraic limit cycle, Bull. Sci. Math., 131 (2007), 405-421. doi: 10.1016/j.bulsci.2006.03.014.

[20]

J. Llibre and C. Valls, Quadratic polynomial differential systems with one pair of singular points at infinity have at most one algebraic limit cycle, to appear in Proc. Edinburgh Math. Soc.

[21]

J. Llibre and C. Valls, Quadratic polynomial differential systems with two pairs of singular points at infinity have at most one algebraic limit cycle, to appear in Geometria Dedicata.

[22]

B. Shen, The problem of the existence of limit cycles and separatrix cycles of cubic curves in quadratic systems, Chinese Ann. Math. Ser. A, 12 (1991), 382-389.

[23]

A. I. Yablonskii, Limit cycles of a certain differential equations, DifferentialEquations, 2 (1966), 193-239.

[24]

Q. Yuan-Xun, On the algebraic limit cycles of second degree of the differential equation $dy/dx=\sum_{0 ≤ i+j ≤ 2} a_{ij} x^i y^j/\sum_{0 ≤ i+j ≤ 2} b_{ij} x^i y^j$, Acta Math. Sinica, 8 (1958), 23-35.

[25]

X. Zhang, Invariant algebraic curves and rational first integrals of holomorphic foliations in CP(2), Sci. China Ser. A, 46 (2003), 271-279. doi: 10.1360/03ys9029.

show all references

References:
[1]

J. ChavarrigaH. Giacomini and M. Grau, Necessary conditions for the existence of invariant algebraic curves for planar polynomial systems, Bull. Sci. Math., 129 (2005), 99-126. doi: 10.1016/j.bulsci.2004.09.002.

[2]

J. ChavarrigaH. Giacomini and J. Llibre, Uniqueness of algebraic limit cycles for quadratic systems, J. Math. Anal. Appl., 261 (2001), 85-99. doi: 10.1006/jmaa.2001.7476.

[3]

J. Chavarriga and J. Llibre, Invariant algebraic curves and rational first integrals planar polynomial vector fields, J. Differential Equations, 169 (2001), 1-16. doi: 10.1006/jdeq.2000.3891.

[4]

J. ChavarrigaJ. Llibre and J. Sorolla, Algebraic limit cycles of degree four for quadratic systems, J. Differential Equations, 200 (2004), 206-244. doi: 10.1016/j.jde.2004.01.003.

[5]

L. S. Chen, Uniqueness of the limit cycle of a quadratic system in the plane, Acta Math. Sinica, 20 (1977), 11-13.

[6]

C. Christopher, Invariant algebraic curves and conditions for a center, Proc. Roy. Soc. Edinburhgh, 124A (1994), 1209-1229. doi: 10.1017/S0308210500030213.

[7]

C. ChristopherJ. Llibre and G. Swirszcz, Invariant algebraic curves of large degree for quadratic systems, J. Math. Anal. Appl., 303 (2005), 206-244. doi: 10.1016/j.jmaa.2004.08.042.

[8]

B. Coll and J. Llibre, Limit cycles for a quadratic systems with an invariant straight line and some evolution of phase portraits, Colloquia Mathematica Societatis Janos Bolyai, 53 (1988), 111-123.

[9]

B. CollG. Gasull and J. Llibre, Quadratic systems with a unique finite rest point, Publicacions Matematiques, 32 (1988), 199-259. doi: 10.5565/PUBLMAT_32288_08.

[10]

W. A. Coppel, Some quadratic systems with at most one limit cycle, Dynamics Reported, 2 (1989), 61-88.

[11]

F. DumortierJ. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Universitext, Springer-Verlag, (2006).

[12]

R. M. Evdokimenco, Construction of algebraic paths and the qualitative investigation in the large of the properties of integral curves of a system of differential equations, Differential Equations, 6 (1970), 1349-1358.

[13]

R. M. Evdokimenco, Behavior of integral curves of a dynamic system, Differential Equations, 9 (1974), 1095-1103.

[14]

R. M. Evdokimenco, Investigation in the large of a dynamic systems with a given integral curve, Differential Equations, 15 (1979), 215-221.

[15]

V. F. Filiptsov, Algebraic limit cycles, Differencial?nye Uravnenija, 9 (1973), 1281-1288.

[16]

D. Hilbert, Mathematische Probleme, in Lecture, Second Internat. Congr. Math., Paris, 1900, in Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl., 1900, pp. 253-297; English transl. in Bull. Amer. Math. Soc., 8 (1902), 437-479.

[17]

J. Llibre, Integrability of polynomial differential systems, in Handbook of Differential Equations, Ordinary Differential Equations, Eds. A. Cañada, P. Drabek and A. Fonda, Elsevier, 1 (2004), 437-479.

[18]

J. Llibre and D. Schlomiuk, On the limit cycles bifurcating from an ellipse of a quadratic center, Discrete Contin. Dyn. Syst. Series B, 35 (2015), 1091-1102.

[19]

J. Llibre and G. Swirszcz, Classification of quadratic systems admitting the existence of an algebraic limit cycle, Bull. Sci. Math., 131 (2007), 405-421. doi: 10.1016/j.bulsci.2006.03.014.

[20]

J. Llibre and C. Valls, Quadratic polynomial differential systems with one pair of singular points at infinity have at most one algebraic limit cycle, to appear in Proc. Edinburgh Math. Soc.

[21]

J. Llibre and C. Valls, Quadratic polynomial differential systems with two pairs of singular points at infinity have at most one algebraic limit cycle, to appear in Geometria Dedicata.

[22]

B. Shen, The problem of the existence of limit cycles and separatrix cycles of cubic curves in quadratic systems, Chinese Ann. Math. Ser. A, 12 (1991), 382-389.

[23]

A. I. Yablonskii, Limit cycles of a certain differential equations, DifferentialEquations, 2 (1966), 193-239.

[24]

Q. Yuan-Xun, On the algebraic limit cycles of second degree of the differential equation $dy/dx=\sum_{0 ≤ i+j ≤ 2} a_{ij} x^i y^j/\sum_{0 ≤ i+j ≤ 2} b_{ij} x^i y^j$, Acta Math. Sinica, 8 (1958), 23-35.

[25]

X. Zhang, Invariant algebraic curves and rational first integrals of holomorphic foliations in CP(2), Sci. China Ser. A, 46 (2003), 271-279. doi: 10.1360/03ys9029.

[1]

Ricardo M. Martins, Otávio M. L. Gomide. Limit cycles for quadratic and cubic planar differential equations under polynomial perturbations of small degree. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3353-3386. doi: 10.3934/dcds.2017142

[2]

Valery A. Gaiko. The geometry of limit cycle bifurcations in polynomial dynamical systems. Conference Publications, 2011, 2011 (Special) : 447-456. doi: 10.3934/proc.2011.2011.447

[3]

Tiago de Carvalho, Rodrigo Donizete Euzébio, Jaume Llibre, Durval José Tonon. Detecting periodic orbits in some 3D chaotic quadratic polynomial differential systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 1-11. doi: 10.3934/dcdsb.2016.21.1

[4]

Xingwu Chen, Jaume Llibre, Weinian Zhang. Averaging approach to cyclicity of hopf bifurcation in planar linear-quadratic polynomial discontinuous differential systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3953-3965. doi: 10.3934/dcdsb.2017203

[5]

Isaac A. García, Jaume Giné. Non-algebraic invariant curves for polynomial planar vector fields. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 755-768. doi: 10.3934/dcds.2004.10.755

[6]

Dan Coman. On the dynamics of a class of quadratic polynomial automorphisms of $\mathbb C^3$. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 55-67. doi: 10.3934/dcds.2002.8.55

[7]

Aihua Li. An algebraic approach to building interpolating polynomial. Conference Publications, 2005, 2005 (Special) : 597-604. doi: 10.3934/proc.2005.2005.597

[8]

Antoni Ferragut, Jaume Llibre, Adam Mahdi. Polynomial inverse integrating factors for polynomial vector fields. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 387-395. doi: 10.3934/dcds.2007.17.387

[9]

J. C. Artés, Jaume Llibre, J. C. Medrado. Nonexistence of limit cycles for a class of structurally stable quadratic vector fields. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 259-270. doi: 10.3934/dcds.2007.17.259

[10]

Armengol Gasull, Hector Giacomini. Upper bounds for the number of limit cycles of some planar polynomial differential systems. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 217-229. doi: 10.3934/dcds.2010.27.217

[11]

Tijana Levajković, Hermann Mena, Amjad Tuffaha. The stochastic linear quadratic optimal control problem in Hilbert spaces: A polynomial chaos approach. Evolution Equations & Control Theory, 2016, 5 (1) : 105-134. doi: 10.3934/eect.2016.5.105

[12]

Iliya D. Iliev, Chengzhi Li, Jiang Yu. Bifurcations of limit cycles in a reversible quadratic system with a center, a saddle and two nodes. Communications on Pure & Applied Analysis, 2010, 9 (3) : 583-610. doi: 10.3934/cpaa.2010.9.583

[13]

M. A. M. Alwash. Polynomial differential equations with small coefficients. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1129-1141. doi: 10.3934/dcds.2009.25.1129

[14]

Jaume Llibre, Claudia Valls. Centers for polynomial vector fields of arbitrary degree. Communications on Pure & Applied Analysis, 2009, 8 (2) : 725-742. doi: 10.3934/cpaa.2009.8.725

[15]

Adriana Buică, Jaume Giné, Maite Grau. Essential perturbations of polynomial vector fields with a period annulus. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1073-1095. doi: 10.3934/cpaa.2015.14.1073

[16]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control & Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

[17]

Eugenia N. Petropoulou, Panayiotis D. Siafarikas. Polynomial solutions of linear partial differential equations. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1053-1065. doi: 10.3934/cpaa.2009.8.1053

[18]

Jaume Llibre, Claudia Valls. Analytic integrability of a class of planar polynomial differential systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2657-2661. doi: 10.3934/dcdsb.2015.20.2657

[19]

Yulin Zhao. On the monotonicity of the period function of a quadratic system. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 795-810. doi: 10.3934/dcds.2005.13.795

[20]

Jaume Llibre, Dana Schlomiuk. On the limit cycles bifurcating from an ellipse of a quadratic center. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1091-1102. doi: 10.3934/dcds.2015.35.1091

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (36)
  • HTML views (391)
  • Cited by (0)

Other articles
by authors

[Back to Top]