# American Institute of Mathematical Sciences

September  2018, 23(7): 2859-2877. doi: 10.3934/dcdsb.2018108

## Underlying one-step methods and nonautonomous stability of general linear methods

 1 Sandia National Laboratories, P.O. Box 5800, MS 1320, Albuquerque, NM 87185-1320, USA 2 Department of Mathematics - University of Kansas, 1460 Jayhawk Blvd, Lawrence, KS 66045-7594, USA

* Corresponding author: Andrew J. Steyer

Dedicated to the memory of Timo Eirola.

Received  April 2017 Revised  September 2017 Published  March 2018

Fund Project: This research was supported in part by NSF grant DMS-1419047

We generalize the theory of underlying one-step methods to strictly stable general linear methods (GLMs) solving nonautonomous ordinary differential equations (ODEs) that satisfy a global Lipschitz condition. We combine this theory with the Lyapunov and Sacker-Sell spectral stability theory for one-step methods developed in [34,35,36] to analyze the stability of a strictly stable GLM solving a nonautonomous linear ODE. These results are applied to develop a stability diagnostic for the solution of nonautonomous linear ODEs by strictly stable GLMs.

Citation: Andrew J. Steyer, Erik S. Van Vleck. Underlying one-step methods and nonautonomous stability of general linear methods. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2859-2877. doi: 10.3934/dcdsb.2018108
##### References:

show all references

##### References:
Left: Logarithmic plot of the 2-norm of the local truncation error of the numerical solution versus time for various values of $h$. Right: Logarithmic plot of the 2-norm of the numerical solution versus time for various values of $h$. The parameter values used were $a_1=a_2=1.2$, $b_1 = -0.14$, $b_2=-0.15$, $\beta=10.0$, $\omega = 1$ with a final time of $t_f = 40$ and the initial condition $x(0)=(1,0)^T$.
Left: Logarithmic plot of the 2-norm of the local truncation error of the numerical solution versus time for various values of $h$. Right: Logarithmic plot of the 2-norm of the numerical solution versus time for various values of $h$. The parameter values used were using $b_1 = -0.5$, $b_2=-.055$, $\beta=1.0$, $\omega = 1$, and a final time of $t_f = 100$ for various values of $a=a_1=a_2$ using the step-sizes $h=0.05$ and the initial condition $x(0)=(1,0)^T$.
Results of an experiment for the solution of (3) using BDF2, $a_1=a_2=1.2$, $b_1 = -0.14$, $b_2=-0.15$, $\beta=10.0$, $\omega = 1$, and a final time of $t_f = 40$ for various step-sizes $h$ and the initial condition $x(0)=(1,0)^T$. LTEmean is the mean local truncation error, LTEmax is the maximum local truncation error, and ${\mu_{\rm{appr}}(N_f/2,N_f/2)}$ is the value of (26) where $N_f$ is the final step of the approximation.
 $h$ LTEmean LTEmax $\mu_{\rm{appr}}(N_f/2,N_f/2)$ $7.5E-1$ $1.37E10$ $1.51E11$ $7.68E-1$ $7.5E-2$ $3.75E-3$ $9.42E-3$ $9.03E-3$ $7.5E-3$ $3.60E-7$ $6.38E-4$ $-9.70E-2$ $7.5E-4$ $1.95E-9$ $6.24E-5$ $-9.04E-2$
 $h$ LTEmean LTEmax $\mu_{\rm{appr}}(N_f/2,N_f/2)$ $7.5E-1$ $1.37E10$ $1.51E11$ $7.68E-1$ $7.5E-2$ $3.75E-3$ $9.42E-3$ $9.03E-3$ $7.5E-3$ $3.60E-7$ $6.38E-4$ $-9.70E-2$ $7.5E-4$ $1.95E-9$ $6.24E-5$ $-9.04E-2$
Results of an experiment for the solution of (3) using BDF2, using $b_1 = -0.5$, $b_2=-.055$, $\beta=1.0$, $\omega = 1$, and a final time of $t_f = 100$ for various values of $a=a_1=a_2$ using the step-sizes $h=0.05$ and the initial condition $x(0)=(1,0)^T$. LTEmean is the mean local truncation error, LTEmax is the maximum local truncation error, ${\mu_{\rm{appr}}(N_f/2,N_f/2)}$ is the value of (26) where $N_f$ is the final step of the approximation, and ${\tau_{\rm{max}}}$ is the maximum value of $\tau_n$ which denotes the quotient of the local truncation error at time-steps $n+1$ and $n$.
 $a_1=a_2=a$ LTEmean LTEmax $\mu_{\rm{appr}}(N_f/2,N_f/2)$ $\tau_{\rm{max}}$ $1.15$ $5.50E-5$ $4.38E-3$ $-2.33E-2$ $1.068$ $1.45$ $1.18E-4$ $5.02E-3$ $-1.69E-3$ $1.086$ $1.75$ $2.88E-4$ $5.70E-3$ $1.78E-2$ $1.11$ $2.05$ $7.96E-4$ $6.4E-3$ $3.64E-2$ $1.23$
 $a_1=a_2=a$ LTEmean LTEmax $\mu_{\rm{appr}}(N_f/2,N_f/2)$ $\tau_{\rm{max}}$ $1.15$ $5.50E-5$ $4.38E-3$ $-2.33E-2$ $1.068$ $1.45$ $1.18E-4$ $5.02E-3$ $-1.69E-3$ $1.086$ $1.75$ $2.88E-4$ $5.70E-3$ $1.78E-2$ $1.11$ $2.05$ $7.96E-4$ $6.4E-3$ $3.64E-2$ $1.23$
 [1] Lars Grüne, Peter E. Kloeden, Stefan Siegmund, Fabian R. Wirth. Lyapunov's second method for nonautonomous differential equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 375-403. doi: 10.3934/dcds.2007.18.375 [2] Wilhelm Schlag. Regularity and convergence rates for the Lyapunov exponents of linear cocycles. Journal of Modern Dynamics, 2013, 7 (4) : 619-637. doi: 10.3934/jmd.2013.7.619 [3] Gabriel Fuhrmann, Jing Wang. Rectifiability of a class of invariant measures with one non-vanishing Lyapunov exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5747-5761. doi: 10.3934/dcds.2017249 [4] Matthias Rumberger. Lyapunov exponents on the orbit space. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 91-113. doi: 10.3934/dcds.2001.7.91 [5] Edson de Faria, Pablo Guarino. Real bounds and Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1957-1982. doi: 10.3934/dcds.2016.36.1957 [6] Andy Hammerlindl. Integrability and Lyapunov exponents. Journal of Modern Dynamics, 2011, 5 (1) : 107-122. doi: 10.3934/jmd.2011.5.107 [7] Sebastian J. Schreiber. Expansion rates and Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 433-438. doi: 10.3934/dcds.1997.3.433 [8] Christopher M. Kellett. Classical converse theorems in Lyapunov's second method. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2333-2360. doi: 10.3934/dcdsb.2015.20.2333 [9] Doan Thai Son. On analyticity for Lyapunov exponents of generic bounded linear random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3113-3126. doi: 10.3934/dcdsb.2017166 [10] Nguyen Dinh Cong, Nguyen Thi Thuy Quynh. Coincidence of Lyapunov exponents and central exponents of linear Ito stochastic differential equations with nondegenerate stochastic term. Conference Publications, 2011, 2011 (Special) : 332-342. doi: 10.3934/proc.2011.2011.332 [11] Chao Liang, Wenxiang Sun, Jiagang Yang. Some results on perturbations of Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4287-4305. doi: 10.3934/dcds.2012.32.4287 [12] Shrihari Sridharan, Atma Ram Tiwari. The dependence of Lyapunov exponents of polynomials on their coefficients. Journal of Computational Dynamics, 2019, 6 (1) : 95-109. doi: 10.3934/jcd.2019004 [13] Luis Barreira, Claudia Valls. Stability of nonautonomous equations and Lyapunov functions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2631-2650. doi: 10.3934/dcds.2013.33.2631 [14] Marat Akhmet, Duygu Aruğaslan. Lyapunov-Razumikhin method for differential equations with piecewise constant argument. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 457-466. doi: 10.3934/dcds.2009.25.457 [15] Mauricio Poletti. Stably positive Lyapunov exponents for symplectic linear cocycles over partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5163-5188. doi: 10.3934/dcds.2018228 [16] Alex Eskin, Maxim Kontsevich, Anton Zorich. Lyapunov spectrum of square-tiled cyclic covers. Journal of Modern Dynamics, 2011, 5 (2) : 319-353. doi: 10.3934/jmd.2011.5.319 [17] Keith Burns, Katrin Gelfert. Lyapunov spectrum for geodesic flows of rank 1 surfaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1841-1872. doi: 10.3934/dcds.2014.34.1841 [18] Janusz Mierczyński, Wenxian Shen. Formulas for generalized principal Lyapunov exponent for parabolic PDEs. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1189-1199. doi: 10.3934/dcdss.2016048 [19] Pedro Duarte, Silvius Klein, Manuel Santos. A random cocycle with non Hölder Lyapunov exponent. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4841-4861. doi: 10.3934/dcds.2019197 [20] Nguyen Dinh Cong, Thai Son Doan, Stefan Siegmund. On Lyapunov exponents of difference equations with random delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 861-874. doi: 10.3934/dcdsb.2015.20.861

2018 Impact Factor: 1.008