# American Institute of Mathematical Sciences

• Previous Article
Bistable waves of a recursive system arising from seasonal age-structured population models
• DCDS-B Home
• This Issue
• Next Article
Hopf bifurcation and pattern formation in a delayed diffusive logistic model with spatial heterogeneity
February  2019, 24(2): 487-510. doi: 10.3934/dcdsb.2018183

## Spatiotemporal attractors generated by the Turing-Hopf bifurcation in a time-delayed reaction-diffusion system

 Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China

* Corresponding author: Weihua Jiang

Received  November 2017 Published  June 2018

Fund Project: The authors are supported the National Natural Science Foundation of China (No.11371112).

We study the Turing-Hopf bifurcation and give a simple and explicit calculation formula of the normal forms for a general two-components system of reaction-diffusion equation with time delays. We declare that our formula can be automated by Matlab. At first, we extend the normal forms method given by Faria in 2000 to Hopf-zero singularity. Then, an explicit formula of the normal forms for Turing-Hopf bifurcation are given. Finally, we obtain the possible attractors of the original system near the Turing-Hopf singularity by the further analysis of the normal forms, which mainly include, the spatially non-homogeneous steady-state solutions, periodic solutions and quasi-periodic solutions.

Citation: Qi An, Weihua Jiang. Spatiotemporal attractors generated by the Turing-Hopf bifurcation in a time-delayed reaction-diffusion system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 487-510. doi: 10.3934/dcdsb.2018183
##### References:

show all references

##### References:
The spatially non-homogeneous periodic attractors $H = (H_1, H_2)$, under the Case 4. Here $\rho_4 = 0.2, ~\phi_1(0) = ( 0.1-0.1\mathrm{{i}}, 0.1+0.5\mathrm{{i}})^{\mathrm{{T}}}$, $h_4 = (0.1, 0.3)^{\mathrm{{T}}}$, $w_4 = 1$, $l = 1$, $n_2 = 3$
The spatially non-homogeneous quasi-periodic attractors $H = (H_1, H_2)$, under the case 5. Here $\rho_4 = 0.2, \rho_5 = 0.1, \phi_1(0) = ( 0.1-0.1\mathrm{{i}}, 0.1+0.5\mathrm{{i}})^{\mathrm{{T}}}$, $h_4 = (0.1, 0.3)^{\mathrm{{T}}}$, $h_5 = (0.2, 0.5)^{\mathrm{{T}}}$, $w_5 = 1$, $\varpi = 0.5$, $l = 1$, $n_2 = 3$
(a) Bifurcation sets in $(\alpha_1, \alpha_2)$ plane. (b) Phase portraits in $D_1-D_6$
Two spatially inhomogeneous periodic solutions coexist in $D_3$, with $(\alpha_1, \alpha_2) = (0.05, -0.33)$. (a), (b) are the solutions $u(t, x), v(t, x)$ of (33) with the initial value functions $(\varphi(t, x), \psi(t, x)) = (u_0+0.005\sin x, v_0+0.001\sin x)$. (c), (d) are the solutions $u(t, x), v(t, x)$ of (33) with the initial value functions $(\varphi(t, x), \psi(t, x)) = (u_0-0.005\sin x, v_0-0.001\sin x)$
Two spatially inhomogeneous steady state solutions coexist in $D_5$, with $(\alpha_1, \alpha_2) = (-0.1, -0.4)$. (a), (b) are the solutions $u(t, x), v(t, x)$ of (33) with the initial value functions $(\varphi(t, x), \psi(t, x)) = (u_0+0.005\sin x, v_0+0.001\sin x)$. (c), (d) are the solutions $u(t, x), v(t, x)$ of (33) with the initial value functions $(\varphi(t, x), \psi(t, x)) = (u_0-0.005\sin x, v_0-0.001\sin x)$
The correspondence between the planner and original system
 Planar system (29) The original system (1) $E_1$ Constant steady state $(0, 0)$ $E_2$ Spatially homogeneous periodic solution $E_3$ Non-constant steady state $E_4$ Spatially non-homogeneous periodic solution Periodic solution Spatially non-homogeneous quasi-periodic solution
 Planar system (29) The original system (1) $E_1$ Constant steady state $(0, 0)$ $E_2$ Spatially homogeneous periodic solution $E_3$ Non-constant steady state $E_4$ Spatially non-homogeneous periodic solution Periodic solution Spatially non-homogeneous quasi-periodic solution
 [1] Rebecca McKay, Theodore Kolokolnikov, Paul Muir. Interface oscillations in reaction-diffusion systems above the Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2523-2543. doi: 10.3934/dcdsb.2012.17.2523 [2] Xiaofeng Xu, Junjie Wei. Turing-Hopf bifurcation of a class of modified Leslie-Gower model with diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 765-783. doi: 10.3934/dcdsb.2018042 [3] Qingyan Shi, Junping Shi, Yongli Song. Hopf bifurcation and pattern formation in a delayed diffusive logistic model with spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 467-486. doi: 10.3934/dcdsb.2018182 [4] Jaume Llibre, Ernesto Pérez-Chavela. Zero-Hopf bifurcation for a class of Lorenz-type systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1731-1736. doi: 10.3934/dcdsb.2014.19.1731 [5] Ming Mei. Stability of traveling wavefronts for time-delayed reaction-diffusion equations. Conference Publications, 2009, 2009 (Special) : 526-535. doi: 10.3934/proc.2009.2009.526 [6] Hooton Edward, Balanov Zalman, Krawcewicz Wieslaw, Rachinskii Dmitrii. Sliding Hopf bifurcation in interval systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3545-3566. doi: 10.3934/dcds.2017152 [7] Fatihcan M. Atay. Delayed feedback control near Hopf bifurcation. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 197-205. doi: 10.3934/dcdss.2008.1.197 [8] Freddy Dumortier, Santiago Ibáñez, Hiroshi Kokubu, Carles Simó. About the unfolding of a Hopf-zero singularity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4435-4471. doi: 10.3934/dcds.2013.33.4435 [9] Yuxiao Guo, Ben Niu. Bautin bifurcation in delayed reaction-diffusion systems with application to the segel-jackson model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6005-6024. doi: 10.3934/dcdsb.2019118 [10] Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997 [11] Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045 [12] John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805 [13] Yicheng Jiang, Kaijun Zhang. Stability of traveling waves for nonlocal time-delayed reaction-diffusion equations. Kinetic & Related Models, 2018, 11 (5) : 1235-1253. doi: 10.3934/krm.2018048 [14] I. Baldomá, Tere M. Seara. The inner equation for generic analytic unfoldings of the Hopf-zero singularity. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 323-347. doi: 10.3934/dcdsb.2008.10.323 [15] Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053 [16] Toshi Ogawa. Degenerate Hopf instability in oscillatory reaction-diffusion equations. Conference Publications, 2007, 2007 (Special) : 784-793. doi: 10.3934/proc.2007.2007.784 [17] Dmitriy Yu. Volkov. The Hopf -- Hopf bifurcation with 2:1 resonance: Periodic solutions and invariant tori. Conference Publications, 2015, 2015 (special) : 1098-1104. doi: 10.3934/proc.2015.1098 [18] Fernando Antoneli, Ana Paula S. Dias, Rui Paiva. Coupled cell networks: Hopf bifurcation and interior symmetry. Conference Publications, 2011, 2011 (Special) : 71-78. doi: 10.3934/proc.2011.2011.71 [19] R. Ouifki, M. L. Hbid, O. Arino. Attractiveness and Hopf bifurcation for retarded differential equations. Communications on Pure & Applied Analysis, 2003, 2 (2) : 147-158. doi: 10.3934/cpaa.2003.2.147 [20] Begoña Alarcón, Víctor Guíñez, Carlos Gutierrez. Hopf bifurcation at infinity for planar vector fields. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 247-258. doi: 10.3934/dcds.2007.17.247

2018 Impact Factor: 1.008