American Institute of Mathematical Sciences

April  2019, 24(4): 1875-1887. doi: 10.3934/dcdsb.2018245

Evolutionarily stable dispersal strategies in a two-patch advective environment

 1 School of Science, Xi'an University of Architecture and Technology, Xi'an 710055, China 2 Institute for Mathematical Science, Renmin University of China, Beijing 100872, China

* Corresponding author: Yihao Fang

Received  December 2017 Revised  March 2018 Published  August 2018

Fund Project: Jing-jing Xiang is partially supported by the Research Foundation of Education Bureau of Shaanxi Province (15JK1433), "The mathematical modeling and analysis of disease spreading in media". Yihao Fang is partially supported by the National Natural Science Foundation of China(11571364).

Two-patch models are used to mimic the unidirectional movement of organisms in continuous, advective environments. We assume that species can move between two patches, with patch 1 as the upper stream patch and patch 2 as the downstream patch. Species disperse between two patches with the same rate, and species in patch 1 is transported to patch 2 by drift, but not vice versa. We also mimic no-flux boundary conditions at the upstream and zero Dirichlet boundary conditions at the downstream. The criteria for the persistence of a single species is established. For two competing species model, we show that there is an intermediate dispersal rate which is evolutionarily stable. These results support the conjecture in [6], initially proposed for reaction-diffusion models with continuous advective environments.

Citation: Jing-Jing Xiang, Yihao Fang. Evolutionarily stable dispersal strategies in a two-patch advective environment. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1875-1887. doi: 10.3934/dcdsb.2018245
References:

show all references

References:
Illustration of Lemma 3.6 for $0\leq q < 1$
Illustration of Lemma 3.7 for $1\leq q < 5/4$
PIP for $0<q < 1$ with the sign of $\lambda_1$
PIP for $1\leq q < 5/4$ with the sign of $\lambda_1$
 [1] Alex Potapov, Ulrike E. Schlägel, Mark A. Lewis. Evolutionarily stable diffusive dispersal. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3319-3340. doi: 10.3934/dcdsb.2014.19.3319 [2] Li Ma, De Tang. Evolution of dispersal in advective homogeneous environments. Discrete & Continuous Dynamical Systems - A, 2020, 40 (10) : 5815-5830. doi: 10.3934/dcds.2020247 [3] Donald L. DeAngelis, Bo Zhang. Effects of dispersal in a non-uniform environment on population dynamics and competition: A patch model approach. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3087-3104. doi: 10.3934/dcdsb.2014.19.3087 [4] Yaying Dong, Shanbing Li, Yanling Li. Effects of dispersal for a predator-prey model in a heterogeneous environment. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2511-2528. doi: 10.3934/cpaa.2019114 [5] Yun Kang, Sourav Kumar Sasmal, Komi Messan. A two-patch prey-predator model with predator dispersal driven by the predation strength. Mathematical Biosciences & Engineering, 2017, 14 (4) : 843-880. doi: 10.3934/mbe.2017046 [6] Theodore E. Galanthay. Mathematical study of the effects of travel costs on optimal dispersal in a two-patch model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1625-1638. doi: 10.3934/dcdsb.2015.20.1625 [7] Junfan Lu, Hong Gu, Bendong Lou. Expanding speed of the habitat for a species in an advective environment. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 483-490. doi: 10.3934/dcdsb.2017023 [8] Philippe Michel, Bhargav Kumar Kakumani. GRE methods for nonlinear model of evolution equation and limited ressource environment. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6653-6673. doi: 10.3934/dcdsb.2019161 [9] Yuan Lou, Dongmei Xiao, Peng Zhou. Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 953-969. doi: 10.3934/dcds.2016.36.953 [10] Wenjie Li, Lihong Huang, Jinchen Ji. Globally exponentially stable periodic solution in a general delayed predator-prey model under discontinuous prey control strategy. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2639-2664. doi: 10.3934/dcdsb.2020026 [11] Robert Stephen Cantrell, Chris Cosner, Yuan Lou. Evolution of dispersal and the ideal free distribution. Mathematical Biosciences & Engineering, 2010, 7 (1) : 17-36. doi: 10.3934/mbe.2010.7.17 [12] Chiu-Yen Kao, Yuan Lou, Wenxian Shen. Evolution of mixed dispersal in periodic environments. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2047-2072. doi: 10.3934/dcdsb.2012.17.2047 [13] Yong-Jung Kim, Hyowon Seo, Changwook Yoon. Asymmetric dispersal and evolutional selection in two-patch system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3571-3593. doi: 10.3934/dcds.2020043 [14] S.A. Gourley, Yang Kuang. Two-Species Competition with High Dispersal: The Winning Strategy. Mathematical Biosciences & Engineering, 2005, 2 (2) : 345-362. doi: 10.3934/mbe.2005.2.345 [15] De Tang. Dynamical behavior for a Lotka-Volterra weak competition system in advective homogeneous environment. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4913-4928. doi: 10.3934/dcdsb.2019037 [16] Roberto Garra. Confinement of a hot temperature patch in the modified SQG model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2407-2416. doi: 10.3934/dcdsb.2018258 [17] Robert Stephen Cantrell, Brian Coomes, Yifan Sha. A tridiagonal patch model of bacteria inhabiting a Nanofabricated landscape. Mathematical Biosciences & Engineering, 2017, 14 (4) : 953-973. doi: 10.3934/mbe.2017050 [18] Henri Berestycki, Jean-Michel Roquejoffre, Luca Rossi. The periodic patch model for population dynamics with fractional diffusion. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 1-13. doi: 10.3934/dcdss.2011.4.1 [19] G. Dal Maso, Antonio DeSimone, M. G. Mora, M. Morini. Globally stable quasistatic evolution in plasticity with softening. Networks & Heterogeneous Media, 2008, 3 (3) : 567-614. doi: 10.3934/nhm.2008.3.567 [20] Long Zhang, Gao Xu, Zhidong Teng. Intermittent dispersal population model with almost period parameters and dispersal delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 2011-2037. doi: 10.3934/dcdsb.2016034

2019 Impact Factor: 1.27