# American Institute of Mathematical Sciences

June 2019, 24(6): 2639-2655. doi: 10.3934/dcdsb.2018268

## Bifurcation scenarios in an ordinary differential equation with constant and distributed delay: A case study

 1 Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, c/Tarfia s/n, 41012 Sevilla, Spain 2 Departament of Engineering, University Niccolò Cusano, Via Don Carlo Gnocchi, 3 00166, Roma, Italy 3 Department of Management, Polytechnic University of Marche, Piazza Martelli 8, 60121, Ancona (AN), Italy

Received  January 2018 Revised  May 2018 Published  October 2018

Fund Project: This work has been partially supported by FEDER and the Spanish Ministerio de Economía y Competitividad project MTM2015-63723-P and the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía) under grant 2010/FQM314 and Proyecto de Excelencia P12-FQM-1492

In this article we consider a model introduced by Ucar in order to simply describe chaotic behaviour with a one dimensional ODE containing a constant delay. We study the bifurcation problem of the equilibria and we obtain an approximation of the periodic orbits generated by the Hopf bifurcation. Moreover, we propose and analyse a more general model containing distributed time delay. Finally, we propose some ideas for further study. All the theoretical results are supported and illustrated by numerical simulations.

Citation: Tomás Caraballo, Renato Colucci, Luca Guerrini. Bifurcation scenarios in an ordinary differential equation with constant and distributed delay: A case study. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2639-2655. doi: 10.3934/dcdsb.2018268
##### References:
 [1] S. Bhalekar, Dynamics of fractional order complex Ucar system, Studies in Computational Intelligence, 688 (2017), 747-771. [2] S. Bhalekar, Stability and bifurcation analysis of a generalised scalar delay differential equation, Chaos, 26 (2016), 084306, 7pp. doi: 10.1063/1.4958923. [3] S. Bhalekar, On the Ucar prototype model with incommensurate delays, Signal, Image and Video Processing, 8 (2014), 635-639. doi: 10.1007/s11760-013-0595-2. [4] T. Caraballo, R. Colucci and L. Guerrini, On a predator prey model with nonlinear harvesting and distributed delay, Comm. Pure and Appl. Anal., 17 (2018), 2703-2727. doi: 10.3934/cpaa.2018128. [5] C. W. Eurich, A. Thiel and L. Fahse, Distributed delays stabilize ecological feedback systems, Phys. Rev. Lett., 94 (2005), 158104. doi: 10.1103/PhysRevLett.94.158104. [6] E. Karaoglu, E. Yilmaz and H. Merdan, Hopf bifurcation analysis of coupled two-neuron system with discrete and distributed delays, Nonlinear Dyn, 85 (2016), 1039-1051. doi: 10.1007/s11071-016-2742-0. [7] E. Karaoglu, E. Yilmaz and H. Merdan, Stability and bifurcation analysis of two-neuron network with discrete and distributed delays, Neurocomputing, 182 (2016), 102-110. doi: 10.1016/j.neucom.2015.12.006. [8] C. Li, X. Liao and J. Yu, Hopf bifurcation in a prototype delayed system, Chaos, Solitons and Fractals, 19 (2004), 779-787. doi: 10.1016/S0960-0779(03)00206-6. [9] X. Li and J. Wu, Stability of nonlinear differential systems with state-dependent delayed impulses, Automatica, 64 (2016), 63-69. doi: 10.1016/j.automatica.2015.10.002. [10] X. Li and S. Song, Stabilization of delay systems: Delay-dependent impulsive control, IEEE Transactions on Automatic Control, 62 (2017), 406-411. doi: 10.1109/TAC.2016.2530041. [11] X. Li and J. Cao, An impulsive delay inequality involving unbounded time-varying delay and applications, IEEE Transactions on Automatic Control, 62 (2017), 3618-3625. doi: 10.1109/TAC.2017.2669580. [12] N. MacDonald, Time Lags in Biological Systems, Springer, New York, 1978. [13] N. MacDonald, Biological Delay Systems: Linear Stability Theory, Cambridge University. 1989. [14] A. Matsumoto and F. Szidarovszky, Delay dynamics in a classical IS-LM model with tax collections, Metroeconomica, 67 (2016), 667-697. doi: 10.1111/meca.12128. [15] A. Matsumoto and F. Szidarovszky, Dynamic monopoly with multiple continuously distributed time delays, Mathematics and Computers in Simulation, 108 (2015), 99-118. doi: 10.1016/j.matcom.2014.01.003. [16] A. Matsumoto and F. Szidarovszky, Boundedly rational monopoly with single continuously distributed time delay, Nonlinear Economic Dynamics and Financial Modelling, Essays in Honour of Carl Chiarella, May 2014, Pages 83-107. [17] A. H. Nayfeh, Introduction to Perturbation Techniques, Wiley, New York, 1981. [18] A. Ucar, A prototype model for chaos studies, International Journal of Engineering Science, 40 (2001), 251-258. doi: 10.1016/S0020-7225(01)00060-X. [19] A. Ucar, On the chaotic behaviour of a prototype delayed dynamical system, Chaos, Solitons and Fractals, 16 (2003), 187-194.

show all references

##### References:
 [1] S. Bhalekar, Dynamics of fractional order complex Ucar system, Studies in Computational Intelligence, 688 (2017), 747-771. [2] S. Bhalekar, Stability and bifurcation analysis of a generalised scalar delay differential equation, Chaos, 26 (2016), 084306, 7pp. doi: 10.1063/1.4958923. [3] S. Bhalekar, On the Ucar prototype model with incommensurate delays, Signal, Image and Video Processing, 8 (2014), 635-639. doi: 10.1007/s11760-013-0595-2. [4] T. Caraballo, R. Colucci and L. Guerrini, On a predator prey model with nonlinear harvesting and distributed delay, Comm. Pure and Appl. Anal., 17 (2018), 2703-2727. doi: 10.3934/cpaa.2018128. [5] C. W. Eurich, A. Thiel and L. Fahse, Distributed delays stabilize ecological feedback systems, Phys. Rev. Lett., 94 (2005), 158104. doi: 10.1103/PhysRevLett.94.158104. [6] E. Karaoglu, E. Yilmaz and H. Merdan, Hopf bifurcation analysis of coupled two-neuron system with discrete and distributed delays, Nonlinear Dyn, 85 (2016), 1039-1051. doi: 10.1007/s11071-016-2742-0. [7] E. Karaoglu, E. Yilmaz and H. Merdan, Stability and bifurcation analysis of two-neuron network with discrete and distributed delays, Neurocomputing, 182 (2016), 102-110. doi: 10.1016/j.neucom.2015.12.006. [8] C. Li, X. Liao and J. Yu, Hopf bifurcation in a prototype delayed system, Chaos, Solitons and Fractals, 19 (2004), 779-787. doi: 10.1016/S0960-0779(03)00206-6. [9] X. Li and J. Wu, Stability of nonlinear differential systems with state-dependent delayed impulses, Automatica, 64 (2016), 63-69. doi: 10.1016/j.automatica.2015.10.002. [10] X. Li and S. Song, Stabilization of delay systems: Delay-dependent impulsive control, IEEE Transactions on Automatic Control, 62 (2017), 406-411. doi: 10.1109/TAC.2016.2530041. [11] X. Li and J. Cao, An impulsive delay inequality involving unbounded time-varying delay and applications, IEEE Transactions on Automatic Control, 62 (2017), 3618-3625. doi: 10.1109/TAC.2017.2669580. [12] N. MacDonald, Time Lags in Biological Systems, Springer, New York, 1978. [13] N. MacDonald, Biological Delay Systems: Linear Stability Theory, Cambridge University. 1989. [14] A. Matsumoto and F. Szidarovszky, Delay dynamics in a classical IS-LM model with tax collections, Metroeconomica, 67 (2016), 667-697. doi: 10.1111/meca.12128. [15] A. Matsumoto and F. Szidarovszky, Dynamic monopoly with multiple continuously distributed time delays, Mathematics and Computers in Simulation, 108 (2015), 99-118. doi: 10.1016/j.matcom.2014.01.003. [16] A. Matsumoto and F. Szidarovszky, Boundedly rational monopoly with single continuously distributed time delay, Nonlinear Economic Dynamics and Financial Modelling, Essays in Honour of Carl Chiarella, May 2014, Pages 83-107. [17] A. H. Nayfeh, Introduction to Perturbation Techniques, Wiley, New York, 1981. [18] A. Ucar, A prototype model for chaos studies, International Journal of Engineering Science, 40 (2001), 251-258. doi: 10.1016/S0020-7225(01)00060-X. [19] A. Ucar, On the chaotic behaviour of a prototype delayed dynamical system, Chaos, Solitons and Fractals, 16 (2003), 187-194.
The solution starting on the left hand side of $O$ converges to $P_- = -1$, while that starting on the right hand side of $O$ converges to $P_+ = 1$.
The solution starting on the left hand side of $O$ converges to a limit cycle around $P_-$, while that starting on the right hand side of $O$ converges to a limit cycle around $P_+$.
The solution $x(t)$ and the graph of $(x(t),x'(t))$ for $\delta = \varepsilon = 1$ and $\tau = 1.72$. The attractor appears to be chaotic.
The numerical solution (in red) together with its approximation (in blue) given by (20).
For $m = 1$, the fixed points $P_\pm$ are locally asymptotically stable for all $T\geq0$.
For m = 2 and $T = 0.9<T_*$ the fixed points $P_\pm$ are locally asymptotically stable.
For m = 2 and $T = 2>T_*$ the fixed points $P_\pm$ are unstable and a stable limit cycle appears.
For $m = 3$ and $T = 0.6<T_*$ the fixed points $P_\pm$ are locally asymptotically stabel
For $m = 3$ and $T = 0.7>T_*$ the fixed points $P_\pm$ are unstable and a stable limit cycle appears.
The solution of sytem (34) for $T = 2$ and $\tau = 5$. Numerical simulations suggest the evidence of a chaotic behaviour.
The solution of sytem (36) for $T = 1.6$ and $\tau = 1.14$. Numerical simulations suggest the evidence of a chaotic behaviour, this is supported by the presence of a strange attractor similar to the famous Lorenz attractor.
 [1] Miguel V. S. Frasson, Patricia H. Tacuri. Asymptotic behaviour of solutions to linear neutral delay differential equations with periodic coefficients. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1105-1117. doi: 10.3934/cpaa.2014.13.1105 [2] Neville J. Ford, Stewart J. Norton. Predicting changes in dynamical behaviour in solutions to stochastic delay differential equations. Communications on Pure & Applied Analysis, 2006, 5 (2) : 367-382. doi: 10.3934/cpaa.2006.5.367 [3] P. Dormayer, A. F. Ivanov. Symmetric periodic solutions of a delay differential equation. Conference Publications, 1998, 1998 (Special) : 220-230. doi: 10.3934/proc.1998.1998.220 [4] Leonid Berezansky, Elena Braverman. Stability of linear differential equations with a distributed delay. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1361-1375. doi: 10.3934/cpaa.2011.10.1361 [5] Josef Diblík. Long-time behavior of positive solutions of a differential equation with state-dependent delay. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 31-46. doi: 10.3934/dcdss.2020002 [6] Runxia Wang, Haihong Liu, Fang Yan, Xiaohui Wang. Hopf-pitchfork bifurcation analysis in a coupled FHN neurons model with delay. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 523-542. doi: 10.3934/dcdss.2017026 [7] Jehad O. Alzabut. A necessary and sufficient condition for the existence of periodic solutions of linear impulsive differential equations with distributed delay. Conference Publications, 2007, 2007 (Special) : 35-43. doi: 10.3934/proc.2007.2007.35 [8] Yejuan Wang, Tongtong Liang. Mild solutions to the time fractional Navier-Stokes delay differential inclusions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-28. doi: 10.3934/dcdsb.2018312 [9] Hermann Brunner, Stefano Maset. Time transformations for delay differential equations. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 751-775. doi: 10.3934/dcds.2009.25.751 [10] Samuel Bernard, Fabien Crauste. Optimal linear stability condition for scalar differential equations with distributed delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1855-1876. doi: 10.3934/dcdsb.2015.20.1855 [11] Samuel Bernard, Jacques Bélair, Michael C Mackey. Sufficient conditions for stability of linear differential equations with distributed delay. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 233-256. doi: 10.3934/dcdsb.2001.1.233 [12] Lin Zhao, Zhi-Cheng Wang, Liang Zhang. Threshold dynamics of a time periodic and two–group epidemic model with distributed delay. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1535-1563. doi: 10.3934/mbe.2017080 [13] Qun Liu, Daqing Jiang, Ningzhong Shi, Tasawar Hayat, Ahmed Alsaedi. Stationarity and periodicity of positive solutions to stochastic SEIR epidemic models with distributed delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2479-2500. doi: 10.3934/dcdsb.2017127 [14] Xiaoqin P. Wu, Liancheng Wang. Hopf bifurcation of a class of two coupled relaxation oscillators of the van der Pol type with delay. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 503-516. doi: 10.3934/dcdsb.2010.13.503 [15] Fang Han, Bin Zhen, Ying Du, Yanhong Zheng, Marian Wiercigroch. Global Hopf bifurcation analysis of a six-dimensional FitzHugh-Nagumo neural network with delay by a synchronized scheme. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 457-474. doi: 10.3934/dcdsb.2011.16.457 [16] Zuolin Shen, Junjie Wei. Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect. Mathematical Biosciences & Engineering, 2018, 15 (3) : 693-715. doi: 10.3934/mbe.2018031 [17] Xiao Wang, Zhaohui Yang, Xiongwei Liu. Periodic and almost periodic oscillations in a delay differential equation system with time-varying coefficients. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6123-6138. doi: 10.3934/dcds.2017263 [18] Pasquale Palumbo, Simona Panunzi, Andrea De Gaetano. Qualitative behavior of a family of delay-differential models of the Glucose-Insulin system. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 399-424. doi: 10.3934/dcdsb.2007.7.399 [19] Eugen Stumpf. On a delay differential equation arising from a car-following model: Wavefront solutions with constant-speed and their stability. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3317-3340. doi: 10.3934/dcdsb.2017139 [20] Xiuli Sun, Rong Yuan, Yunfei Lv. Global Hopf bifurcations of neutral functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 667-700. doi: 10.3934/dcdsb.2018038

2017 Impact Factor: 0.972

## Tools

Article outline

Figures and Tables