• Previous Article
    Global existence and asymptotic behavior of global smooth solutions to the Kirchhoff equations with strong nonlinear damping
  • DCDS-B Home
  • This Issue
  • Next Article
    Existence of ground state solutions for the planar axially symmetric Schrödinger-Poisson system
September  2019, 24(9): 4703-4720. doi: 10.3934/dcdsb.2018330

The diffusive model for Aedes aegypti mosquito on a periodically evolving domain

1. 

School of Mathematical Science, Yangzhou University, Yangzhou 225002, China

2. 

Key Laboratory of PCBHFASQ, Yangzhou University, Yangzhou 225002, China

* Corresponding author

Received  June 2018 Revised  August 2018 Published  January 2019

Fund Project: The work is partially supported by the NNSF of China (Grant No. 11771381, 61877052).

This paper deals with a reaction-diffusion model on a periodically and isotropically evolving domain in order to explore the diffusive dynamics of Aedes aegypti mosquito, where we divide it into two sub-populations: the winged population and an aquatic form. The spatial-temporal risk index $ R_0(\rho) $ depending on the domain evolution rate $ \rho(t) $ as well as its analytical properties is investigated. The long-time behaviors of the periodic solutions under the condition $ R_0(\rho)>1 $ and $ R_0(\rho)\leq1 $ are explored, respectively. Moreover, we consider the specific case where $ \rho(t)\equiv1 $ to better understand the impact of the periodic evolution rate on the persistence and extinction of Aedes aegypti mosquito. Numerical simulations further verify our analytical results that the periodic domain evolution has a significant impact on the dispersal of Aedes aegypti mosquito.

Citation: Mengyun Zhang, Zhigui Lin. The diffusive model for Aedes aegypti mosquito on a periodically evolving domain. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4703-4720. doi: 10.3934/dcdsb.2018330
References:
[1] D. Acheson, Elementary Fluid Dynamics, Oxford University Press, New York, 1990.   Google Scholar
[2]

L. J. S. Allen, B. M. Bolker, Y. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst. Ser. A, 21 (2008), 1-20. doi: 10.3934/dcds.2008.21.1.  Google Scholar

[3]

P. $\acute{A}$lvarez-Caudevilla, Y. H. Du and R. Peng, Qualitative analysis of a cooperative reaction-diffusion system in a spatiotemporally degenerate environment, SIAM J. Math. Anal., 46 (2014), 499-531. doi: 10.1137/13091628X.  Google Scholar

[4]

I. Ant$\acute{o}$n and J. L$\acute{o}$pez-G$\acute{o}$mez, The strong maximum principle for cooperative periodic-parabolic systems and the existence of principal eigenvalues, World Congress of Nonlinear Analysts '92, Vol. Ⅰ-Ⅳ (Tampa, FL, 1992), 323-334, de Gruyter, Berlin, 1996.  Google Scholar

[5]

N. Baca$\ddot{e}$r and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality, J. Math. Biol., 53 (2006), 421-436. doi: 10.1007/s00285-006-0015-0.  Google Scholar

[6] M. J. Baines, Moving Finite Element, Monographs on Numerical Analysis, Clarendon Press, Oxford, 1994.   Google Scholar
[7]

P. A. Bliman, M. S. Aronna, F. C. Coelho and M. A. H. B. da Silva, Ensuring successful introduction of Wolbachia in natural populations of Aedes aegypti by means of feedback control, J. Math. Biol., 76 (2018), 1269-1300. doi: 10.1007/s00285-017-1174-x.  Google Scholar

[8]

S. Cauchemez, M. Ledrans, C. Poletto, P.Quenel, H. De Valk, V. Colizza and P. Y. Bo$\ddot{e}$lle, Local and regional spread of chikungunya fever in the Americas, Euro surveill, Biometrika, 19 (2014), 20854. Google Scholar

[9]

E. J. Crampin, E. A. Gaffney and P. K. Maini, Mode-doubling and tripling in reaction-diffusion patterns on growing domains: A piecewise linear model, J. Math. Biol., 44 (2002), 107-128. doi: 10.1007/s002850100112.  Google Scholar

[10]

R. H. Cui and Y. Lou, A spatial SIS model in advective heterogeneous environments, J. Differential Equations, 261 (2016), 3305-3343. doi: 10.1016/j.jde.2016.05.025.  Google Scholar

[11]

W. W. Ding, R. Peng and L. Wei, The diffusive logistic model with a free boundary in a heterogeneous time-periodic environment, J. Differential Equations, 263 (2017), 2736-2779. doi: 10.1016/j.jde.2017.04.013.  Google Scholar

[12]

Y. H. Du, Z. M. Guo and R. Peng, A diffusive logistic model with a free boundary in time-periodic environment, J. Funct. Anal., 265 (2013), 2089-2142. doi: 10.1016/j.jfa.2013.07.016.  Google Scholar

[13]

Y. H. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405. doi: 10.1137/090771089.  Google Scholar

[14]

D. J. Gubler, Dengue and dengue hemorrhagic fever, Clin. Microb. Rev., 11 (1998), 480-496. Google Scholar

[15]

P. Hess, Periodic-parabolic Boundary Value Problems and Positivity, Pitman Research Notes in Mathematics, Vol. 247. Longman Sci. Tech., Harlow, 1991.  Google Scholar

[16]

D. H. Jiang and Z. C. Wang, The diffusive Logistic equation on periodically evolving domains, J. Math. Anal. Appl., 458 (2018), 93-111. doi: 10.1016/j.jmaa.2017.08.059.  Google Scholar

[17]

Y. Kaneko and H. Matsuzawa, Spreading speed and sharp asymptotic profiles of solutions in free boundary problems for nonlinear advection-diffusion equations, J. Math. Anal. Appl., 428 (2015), 43-76. doi: 10.1016/j.jmaa.2015.02.051.  Google Scholar

[18]

C. X. LeiZ. G. Lin and Q. Y. Zhang, The spreading front of invasive species in favorable habitat or unfavorable habitat, J. Differential Equations, 257 (2014), 145-166.  doi: 10.1016/j.jde.2014.03.015.  Google Scholar

[19]

C. Li, Y. M. Lu, J. N. Liu and X. X. Wu, Climate change and dengue fever transmission in China: Evidences and challenges, S. Total Environment, 622-623 (2018), 493-501. Google Scholar

[20]

H. C. Li, R. Peng and F. B. Wang, Varying total population enhances disease persistence: Qualitative analysis on a diffusive SIS epidemic model, J. Differential Equations, 262 (2017), 885-913. doi: 10.1016/j.jde.2016.09.044.  Google Scholar

[21]

X. Liang, L. Zhang and X. Q. Zhao, Basic reproduction ratios for periodic abstract functional differential equations (with application to a spatial model for Lyme disease), J. Dyn. Diff. Equat., 261 (2016), 340-372. doi: 10.1016/j.jde.2016.03.014.  Google Scholar

[22]

Z. G. Lin and H. P. Zhu, Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary, J. Math. Biol., 75 (2017), 1381-1409. doi: 10.1007/s00285-017-1124-7.  Google Scholar

[23]

A. Madzvamuse, Time-stepping schemes for moving grid finite elements applied to reaction-diffusion systems on fixed and growing domains, J. Computational Physics, 214 (2006), 239-263.  doi: 10.1016/j.jcp.2005.09.012.  Google Scholar

[24]

A. Madzvamuse, E. A. Gaffney and P. K. Maini, Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains, J. Math. Biol., 61 (2010), 133-164. doi: 10.1007/s00285-009-0293-4.  Google Scholar

[25]

A. Madzvamuse and P. K. Maini, Velocity-induced numerical solutions of reaction-diffusion systems on continuously growing domains, J. Computational Physics, 225 (2007), 100-119. doi: 10.1016/j.jcp.2006.11.022.  Google Scholar

[26]

M. Mimura, Y. Yamada and S. Yotsutani, A free boundary problem in ecology, Japan J. Appl. Math., 2 (1985), 151-186. doi: 10.1007/BF03167042.  Google Scholar

[27]

M. Mimura, Y. Yamada and S. Yotsutani, Free boundary problems for some reaction-diffusion equations, Hiroshima Math. J., 17 (1987), 241-280.  Google Scholar

[28]

C. V. Pao, Stability and attractivity of periodic solutions of parabolic systems with time delays, J. Math. Anal. Appl., 304 (2005), 423-450. doi: 10.1016/j.jmaa.2004.09.014.  Google Scholar

[29]

R. Peng and X. Q. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25 (2012), 1451-1471. doi: 10.1088/0951-7715/25/5/1451.  Google Scholar

[30]

L. T. Takahashi, N. A. Maidana, W. Jr. Castro Ferreira, P. Pulino and H. M. Yang, Mathematical models for the Aedes aegypti dispersal dynamics: travelling waves by wing and wind, Bull. Math. Biol., 67 (2005), 509-528. doi: 10.1016/j.bulm.2004.08.005.  Google Scholar

[31]

Q. L. Tang and Z. G. Lin, The asymptotic analysis of an insect dispersal model on a growing domain, J. Math. Anal. Appl., 378 (2011), 649-656. doi: 10.1016/j.jmaa.2011.01.057.  Google Scholar

[32]

Q. L. Tang, L. Zhang and Z. G. Lin, Asymptotic profile of species migrating on a growing habitat, Acta Appl. Math., 116 (2011), 227-235. doi: 10.1007/s10440-011-9639-1.  Google Scholar

[33]

C. R. Tian and S. G. Ruan, A free boundary problem for Aedes aegypti mosquito invasion, Appl. Math. Model., 46 (2017), 203-217. doi: 10.1016/j.apm.2017.01.050.  Google Scholar

[34]

P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[35]

W. D. Wang and X. Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652-1673. doi: 10.1137/120872942.  Google Scholar

[36]

D. Weetman and B. Kamgang, etc, Aedes mosquitoes and aedes-borne arboviruses in africa: Current and future threats, Int. J. Environ. Res. Public Health, 15 (2018), 220. Google Scholar

[37]

X. Q. Zhao, Dynamical Systems in Population Biology. Second Edition, CMS Books in Mathematics/Ouvrages de Math$\acute{e}$matiques de la SMC. Springer, Cham, 2017. doi: 10.1007/978-3-319-56433-3.  Google Scholar

show all references

References:
[1] D. Acheson, Elementary Fluid Dynamics, Oxford University Press, New York, 1990.   Google Scholar
[2]

L. J. S. Allen, B. M. Bolker, Y. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst. Ser. A, 21 (2008), 1-20. doi: 10.3934/dcds.2008.21.1.  Google Scholar

[3]

P. $\acute{A}$lvarez-Caudevilla, Y. H. Du and R. Peng, Qualitative analysis of a cooperative reaction-diffusion system in a spatiotemporally degenerate environment, SIAM J. Math. Anal., 46 (2014), 499-531. doi: 10.1137/13091628X.  Google Scholar

[4]

I. Ant$\acute{o}$n and J. L$\acute{o}$pez-G$\acute{o}$mez, The strong maximum principle for cooperative periodic-parabolic systems and the existence of principal eigenvalues, World Congress of Nonlinear Analysts '92, Vol. Ⅰ-Ⅳ (Tampa, FL, 1992), 323-334, de Gruyter, Berlin, 1996.  Google Scholar

[5]

N. Baca$\ddot{e}$r and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality, J. Math. Biol., 53 (2006), 421-436. doi: 10.1007/s00285-006-0015-0.  Google Scholar

[6] M. J. Baines, Moving Finite Element, Monographs on Numerical Analysis, Clarendon Press, Oxford, 1994.   Google Scholar
[7]

P. A. Bliman, M. S. Aronna, F. C. Coelho and M. A. H. B. da Silva, Ensuring successful introduction of Wolbachia in natural populations of Aedes aegypti by means of feedback control, J. Math. Biol., 76 (2018), 1269-1300. doi: 10.1007/s00285-017-1174-x.  Google Scholar

[8]

S. Cauchemez, M. Ledrans, C. Poletto, P.Quenel, H. De Valk, V. Colizza and P. Y. Bo$\ddot{e}$lle, Local and regional spread of chikungunya fever in the Americas, Euro surveill, Biometrika, 19 (2014), 20854. Google Scholar

[9]

E. J. Crampin, E. A. Gaffney and P. K. Maini, Mode-doubling and tripling in reaction-diffusion patterns on growing domains: A piecewise linear model, J. Math. Biol., 44 (2002), 107-128. doi: 10.1007/s002850100112.  Google Scholar

[10]

R. H. Cui and Y. Lou, A spatial SIS model in advective heterogeneous environments, J. Differential Equations, 261 (2016), 3305-3343. doi: 10.1016/j.jde.2016.05.025.  Google Scholar

[11]

W. W. Ding, R. Peng and L. Wei, The diffusive logistic model with a free boundary in a heterogeneous time-periodic environment, J. Differential Equations, 263 (2017), 2736-2779. doi: 10.1016/j.jde.2017.04.013.  Google Scholar

[12]

Y. H. Du, Z. M. Guo and R. Peng, A diffusive logistic model with a free boundary in time-periodic environment, J. Funct. Anal., 265 (2013), 2089-2142. doi: 10.1016/j.jfa.2013.07.016.  Google Scholar

[13]

Y. H. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405. doi: 10.1137/090771089.  Google Scholar

[14]

D. J. Gubler, Dengue and dengue hemorrhagic fever, Clin. Microb. Rev., 11 (1998), 480-496. Google Scholar

[15]

P. Hess, Periodic-parabolic Boundary Value Problems and Positivity, Pitman Research Notes in Mathematics, Vol. 247. Longman Sci. Tech., Harlow, 1991.  Google Scholar

[16]

D. H. Jiang and Z. C. Wang, The diffusive Logistic equation on periodically evolving domains, J. Math. Anal. Appl., 458 (2018), 93-111. doi: 10.1016/j.jmaa.2017.08.059.  Google Scholar

[17]

Y. Kaneko and H. Matsuzawa, Spreading speed and sharp asymptotic profiles of solutions in free boundary problems for nonlinear advection-diffusion equations, J. Math. Anal. Appl., 428 (2015), 43-76. doi: 10.1016/j.jmaa.2015.02.051.  Google Scholar

[18]

C. X. LeiZ. G. Lin and Q. Y. Zhang, The spreading front of invasive species in favorable habitat or unfavorable habitat, J. Differential Equations, 257 (2014), 145-166.  doi: 10.1016/j.jde.2014.03.015.  Google Scholar

[19]

C. Li, Y. M. Lu, J. N. Liu and X. X. Wu, Climate change and dengue fever transmission in China: Evidences and challenges, S. Total Environment, 622-623 (2018), 493-501. Google Scholar

[20]

H. C. Li, R. Peng and F. B. Wang, Varying total population enhances disease persistence: Qualitative analysis on a diffusive SIS epidemic model, J. Differential Equations, 262 (2017), 885-913. doi: 10.1016/j.jde.2016.09.044.  Google Scholar

[21]

X. Liang, L. Zhang and X. Q. Zhao, Basic reproduction ratios for periodic abstract functional differential equations (with application to a spatial model for Lyme disease), J. Dyn. Diff. Equat., 261 (2016), 340-372. doi: 10.1016/j.jde.2016.03.014.  Google Scholar

[22]

Z. G. Lin and H. P. Zhu, Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary, J. Math. Biol., 75 (2017), 1381-1409. doi: 10.1007/s00285-017-1124-7.  Google Scholar

[23]

A. Madzvamuse, Time-stepping schemes for moving grid finite elements applied to reaction-diffusion systems on fixed and growing domains, J. Computational Physics, 214 (2006), 239-263.  doi: 10.1016/j.jcp.2005.09.012.  Google Scholar

[24]

A. Madzvamuse, E. A. Gaffney and P. K. Maini, Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains, J. Math. Biol., 61 (2010), 133-164. doi: 10.1007/s00285-009-0293-4.  Google Scholar

[25]

A. Madzvamuse and P. K. Maini, Velocity-induced numerical solutions of reaction-diffusion systems on continuously growing domains, J. Computational Physics, 225 (2007), 100-119. doi: 10.1016/j.jcp.2006.11.022.  Google Scholar

[26]

M. Mimura, Y. Yamada and S. Yotsutani, A free boundary problem in ecology, Japan J. Appl. Math., 2 (1985), 151-186. doi: 10.1007/BF03167042.  Google Scholar

[27]

M. Mimura, Y. Yamada and S. Yotsutani, Free boundary problems for some reaction-diffusion equations, Hiroshima Math. J., 17 (1987), 241-280.  Google Scholar

[28]

C. V. Pao, Stability and attractivity of periodic solutions of parabolic systems with time delays, J. Math. Anal. Appl., 304 (2005), 423-450. doi: 10.1016/j.jmaa.2004.09.014.  Google Scholar

[29]

R. Peng and X. Q. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25 (2012), 1451-1471. doi: 10.1088/0951-7715/25/5/1451.  Google Scholar

[30]

L. T. Takahashi, N. A. Maidana, W. Jr. Castro Ferreira, P. Pulino and H. M. Yang, Mathematical models for the Aedes aegypti dispersal dynamics: travelling waves by wing and wind, Bull. Math. Biol., 67 (2005), 509-528. doi: 10.1016/j.bulm.2004.08.005.  Google Scholar

[31]

Q. L. Tang and Z. G. Lin, The asymptotic analysis of an insect dispersal model on a growing domain, J. Math. Anal. Appl., 378 (2011), 649-656. doi: 10.1016/j.jmaa.2011.01.057.  Google Scholar

[32]

Q. L. Tang, L. Zhang and Z. G. Lin, Asymptotic profile of species migrating on a growing habitat, Acta Appl. Math., 116 (2011), 227-235. doi: 10.1007/s10440-011-9639-1.  Google Scholar

[33]

C. R. Tian and S. G. Ruan, A free boundary problem for Aedes aegypti mosquito invasion, Appl. Math. Model., 46 (2017), 203-217. doi: 10.1016/j.apm.2017.01.050.  Google Scholar

[34]

P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[35]

W. D. Wang and X. Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652-1673. doi: 10.1137/120872942.  Google Scholar

[36]

D. Weetman and B. Kamgang, etc, Aedes mosquitoes and aedes-borne arboviruses in africa: Current and future threats, Int. J. Environ. Res. Public Health, 15 (2018), 220. Google Scholar

[37]

X. Q. Zhao, Dynamical Systems in Population Biology. Second Edition, CMS Books in Mathematics/Ouvrages de Math$\acute{e}$matiques de la SMC. Springer, Cham, 2017. doi: 10.1007/978-3-319-56433-3.  Google Scholar

Figure 1.  $ \rho(t) = 1 $. For fixed domain, we have $ R_0(1.1)<1 $. Graphs $ (a)-(c) $ show that $ M $ tends to 0
Figure 2.  $ \rho(t) = e^{0.1(1-\cos(4t))} $. For big evolution rate $ \rho(t) $ with $ \overline{\rho^{-2}}<1 $, we have $ R_0(\rho)>1 $. Graph $ (a) $ shows that $ M $ stabilizes to a positive periodic steady state. Graphs $ (b) $ and $ (c) $, which are the cross-sectional view and contour map respectively, present the periodic evolution of the domain
Figure 3.  $ \rho(t) = 1 $. For fixed domain, we have $ R_0(1.1)>1 $. Graphs $ (a)-(c) $ show that $ M $ tends to a positive steady state
Figure 4.  $ \rho(t) = e^{0.1(\cos(4t)-1)} $. For small evolution rate $ \rho(t) $ with $ \overline{\rho^{-2}}>1 $, we couldn't figure out the value of $ R_0(\rho) $. But we can see from graphs $ (a)-(c) $ that mosquitoes become extinct eventually
[1]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[2]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[3]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[4]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[5]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[6]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[7]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[8]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[9]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[10]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[11]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[12]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[13]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[14]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[15]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[16]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[17]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[18]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[19]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[20]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (257)
  • HTML views (658)
  • Cited by (1)

Other articles
by authors

[Back to Top]