August  2019, 24(8): 3881-3903. doi: 10.3934/dcdsb.2018335

Analysis of multilevel Monte Carlo path simulation using the Milstein discretisation

1. 

Mathematical Institute, Oxford University, Oxford OX2 6GG, United Kingdom

2. 

Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark

3. 

Institute of Mathematics, University of Lübeck, 23562 Lübeck, Germany

* Corresponding author: Michael B. Giles

Received  March 2018 Published  January 2019

The multilevel Monte Carlo path simulation method introduced by Giles (Operations Research, 56(3):607-617, 2008) exploits strong convergence properties to improve the computational complexity by combining simulations with different levels of resolution. In this paper we analyse its efficiency when using the Milstein discretisation; this has an improved order of strong convergence compared to the standard Euler-Maruyama method, and it is proved that this leads to an improved order of convergence of the variance of the multilevel estimator. Numerical results are also given for basket options to illustrate the relevance of the analysis.

Citation: Michael B. Giles, Kristian Debrabant, Andreas Rössler. Analysis of multilevel Monte Carlo path simulation using the Milstein discretisation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3881-3903. doi: 10.3934/dcdsb.2018335
References:
[1]

R. Avikainen, On irregular functionals of SDEs and the Euler scheme, Finance and Stochastics, 13 (2009), 381-401.  doi: 10.1007/s00780-009-0099-7.  Google Scholar

[2]

P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling Extremal Events: For Insurance and Finance, Springer, 2008. Google Scholar

[3]

M. B. Giles, Improved multilevel Monte Carlo convergence using the Milstein scheme, in Monte Carlo and Quasi-Monte Carlo Methods 2006 (eds. A. Keller, S. Heinrich and H. Niederreiter), Springer, 2008,343–358. doi: 10.1007/978-3-540-74496-2_20.  Google Scholar

[4]

M. B. Giles, Multilevel Monte Carlo path simulation, Operations Research, 56 (2008), 607-617.  doi: 10.1287/opre.1070.0496.  Google Scholar

[5]

M. B. Giles, Multilevel Monte Carlo for basket options, in Proceedings of the 2009 Winter Simulation Conference (eds. M. Rossetti, R. Hill, B. Johansson, A. Dunkin and R. Ingalls), IEEE, 2009, 1283–1290. doi: 10.1109/WSC.2009.5429692.  Google Scholar

[6]

M. B. Giles, Multilevel Monte Carlo methods, Acta Numerica, 24 (2015), 259-328.  doi: 10.1017/S096249291500001X.  Google Scholar

[7]

M. B. GilesD. Higham and X. Mao, Analysing multilevel Monte Carlo for options with non-globally Lipschitz payoff, Finance and Stochastics, 13 (2009), 403-413.  doi: 10.1007/s00780-009-0092-1.  Google Scholar

[8]

M. B. Giles and L. Szpruch, Antithetic multilevel Monte Carlo estimation for multi-dimensional SDEs without Lüvy area simulation, Annals of Applied Probability, 24 (2014), 1585-1620.  doi: 10.1214/13-AAP957.  Google Scholar

[9]

P. Glasserman, Monte Carlo Methods in Financial Engineering, Springer, New York, 2004.  Google Scholar

[10]

P. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer, Berlin, 1992. doi: 10.1007/978-3-662-12616-5.  Google Scholar

show all references

References:
[1]

R. Avikainen, On irregular functionals of SDEs and the Euler scheme, Finance and Stochastics, 13 (2009), 381-401.  doi: 10.1007/s00780-009-0099-7.  Google Scholar

[2]

P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling Extremal Events: For Insurance and Finance, Springer, 2008. Google Scholar

[3]

M. B. Giles, Improved multilevel Monte Carlo convergence using the Milstein scheme, in Monte Carlo and Quasi-Monte Carlo Methods 2006 (eds. A. Keller, S. Heinrich and H. Niederreiter), Springer, 2008,343–358. doi: 10.1007/978-3-540-74496-2_20.  Google Scholar

[4]

M. B. Giles, Multilevel Monte Carlo path simulation, Operations Research, 56 (2008), 607-617.  doi: 10.1287/opre.1070.0496.  Google Scholar

[5]

M. B. Giles, Multilevel Monte Carlo for basket options, in Proceedings of the 2009 Winter Simulation Conference (eds. M. Rossetti, R. Hill, B. Johansson, A. Dunkin and R. Ingalls), IEEE, 2009, 1283–1290. doi: 10.1109/WSC.2009.5429692.  Google Scholar

[6]

M. B. Giles, Multilevel Monte Carlo methods, Acta Numerica, 24 (2015), 259-328.  doi: 10.1017/S096249291500001X.  Google Scholar

[7]

M. B. GilesD. Higham and X. Mao, Analysing multilevel Monte Carlo for options with non-globally Lipschitz payoff, Finance and Stochastics, 13 (2009), 403-413.  doi: 10.1007/s00780-009-0092-1.  Google Scholar

[8]

M. B. Giles and L. Szpruch, Antithetic multilevel Monte Carlo estimation for multi-dimensional SDEs without Lüvy area simulation, Annals of Applied Probability, 24 (2014), 1585-1620.  doi: 10.1214/13-AAP957.  Google Scholar

[9]

P. Glasserman, Monte Carlo Methods in Financial Engineering, Springer, New York, 2004.  Google Scholar

[10]

P. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer, Berlin, 1992. doi: 10.1007/978-3-662-12616-5.  Google Scholar

Figure 1.  Asian option
Figure 2.  Lookback option
Figure 3.  Barrier option
Figure 4.  Digital option
Table 1.  Orders of convergence for $ V_\ell $ as observed numerically and proved analytically for both the Euler-Maruyama and Milstein discretisations; $ \delta $ can be any strictly positive constant
Euler-Maruyama Milstein
option numerical analysis numerical analysis
Lipschitz $ {O} (h) $ $ {O} (h) $ $ {O} (h^2) $ $ {O} (h^2) $
Asian $ {O} (h) $ $ {O} (h) $ $ {O} (h^2) $ $ {O} (h^2) $
lookback $ {O} (h) $ $ {O} (h) $ $ {O} (h^2) $ $ {O} (h^2 (\log h)^2) $
barrier $ {O} (h^{1/2}) $ $ {o} (h^{1/2-\delta}) $ $ {O} (h^{3/2}) $ $ {o} (h^{3/2-\delta}) $
digital $ {O} (h^{1/2}) $ $ {O} (h^{1/2}\log h) $ $ {O} (h^{3/2}) $ $ {o} (h^{3/2-\delta}) $
Euler-Maruyama Milstein
option numerical analysis numerical analysis
Lipschitz $ {O} (h) $ $ {O} (h) $ $ {O} (h^2) $ $ {O} (h^2) $
Asian $ {O} (h) $ $ {O} (h) $ $ {O} (h^2) $ $ {O} (h^2) $
lookback $ {O} (h) $ $ {O} (h) $ $ {O} (h^2) $ $ {O} (h^2 (\log h)^2) $
barrier $ {O} (h^{1/2}) $ $ {o} (h^{1/2-\delta}) $ $ {O} (h^{3/2}) $ $ {o} (h^{3/2-\delta}) $
digital $ {O} (h^{1/2}) $ $ {O} (h^{1/2}\log h) $ $ {O} (h^{3/2}) $ $ {o} (h^{3/2-\delta}) $
[1]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[2]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[3]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[4]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[5]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[6]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[7]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[8]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[9]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[10]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[11]

Yila Bai, Haiqing Zhao, Xu Zhang, Enmin Feng, Zhijun Li. The model of heat transfer of the arctic snow-ice layer in summer and numerical simulation. Journal of Industrial & Management Optimization, 2005, 1 (3) : 405-414. doi: 10.3934/jimo.2005.1.405

[12]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[13]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[14]

Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409

[15]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[16]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[17]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[18]

Seung-Yeal Ha, Dongnam Ko, Chanho Min, Xiongtao Zhang. Emergent collective behaviors of stochastic kuramoto oscillators. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1059-1081. doi: 10.3934/dcdsb.2019208

[19]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[20]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (174)
  • HTML views (513)
  • Cited by (0)

[Back to Top]