August  2019, 24(8): 3905-3928. doi: 10.3934/dcdsb.2018336

Multiobjective model predictive control for stabilizing cost criteria

Chair of Applied Mathematics, Department of Mathematics, University of Bayreuth, 95440 Bayreuth, Germany

Received  April 2018 Revised  September 2018 Published  January 2019

Fund Project: The authors are supported by DFG Grant Gr 1569/13-1.

In this paper we demonstrate how multiobjective optimal control problems can be solved by means of model predictive control. For our analysis we restrict ourselves to finite-dimensional control systems in discrete time. We show that convergence of the MPC closed-loop trajectory as well as upper bounds on the closed-loop performance for all objectives can be established if the ‘right’ Pareto-optimal control sequence is chosen in the iterations. It turns out that approximating the whole Pareto front is not necessary for that choice. Moreover, we provide statements on the relation of the MPC performance to the values of Pareto-optimal solutions on the infinite horizon, i.e. we investigate on the inifinite-horizon optimality of our MPC controller.

Citation: Lars Grüne, Marleen Stieler. Multiobjective model predictive control for stabilizing cost criteria. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3905-3928. doi: 10.3934/dcdsb.2018336
References:
[1]

A. Bemporad and D. Muñoz de la Peña, Multiobjective model predictive control, Automatica, 45 (2009), 2823-2830.  doi: 10.1016/j.automatica.2009.09.032.  Google Scholar

[2]

D. P. Bertsekas, Dynamic Programming and Optimal Control, vol. 1, 2nd edition, Athena Scientific, 2000. Google Scholar

[3]

J. Doležal, Existence of optimal solutions in general discrete systems, Kybernetika, 11 (1975), 301-312.   Google Scholar

[4]

M. Ehrgott, Multicriteria Optimization, 2nd edition, Springer, 2005.  Google Scholar

[5]

J. J. V. GarcíaV. G. GarayE. I. GordoF. A. Fano and M. L. Sukia, Intelligent multi-objective nonlinear model predictive control (imo-nmpc): Towards the "on-line" optimization of highly complex control problems, Expert systems with applications, 39 (2012), 6527-6540.   Google Scholar

[6]

P. Giselsson and A. Rantzer, Distributed Model Predictive Control with Suboptimality and Stability Guarantees, in 49th IEEE Conference on Decision and Control (CDC), IEEE, 2010, 7272-7277. Google Scholar

[7]

L. Grüne and J. Pannek, Nonlinear Model Predictive Control: Theory and Algorithms, 2nd edition, Communications and Control Engineering, Springer, 2017. doi: 10.1007/978-3-319-46024-6.  Google Scholar

[8]

L. Grüne and A. Rantzer, On the infinite horizon performance of receding horizon controllers, IEEE Transactions on Automatic Control, 53 (2008), 2100-2111.  doi: 10.1109/TAC.2008.927799.  Google Scholar

[9]

L. Grüne and M. Stieler, Performance guarantees for multiobjective Model Predictive Control, in Proceedings of the IEEE 56th Annual Conference on Decision and Control (CDC) Held in Melbourne, Australia, 2017, Melbourne, Australia, 2017, 5545-5550. Google Scholar

[10]

C. M. Hackl, F. Larcher, A. Dötlinger and R. M. Kennel, Is multiple-objective model-predictive control "optimal"?, in 2013 IEEE International Symposium on Sensorless Control for Electrical Drives and Predictive Control of Electrical Drives and Power Electronics (SLED/PRECEDE), 2013. Google Scholar

[11]

A. Hajiloo, W. Xie and X. Ren, Multi-objective robust model predictive control using game theory, in Proceedings of the 2015 IEEE International Conference on Information and Automation, IEEE, 2015, 2026-2030. Google Scholar

[12]

N. Hayek, Infinite horizon multiobjective optimal control problems in the discrete time case, Optimization, 60 (2011), 509-529.  doi: 10.1080/02331930903480352.  Google Scholar

[13]

D. HeL. Wang and J. Sun, On stability of multiobjective NMPC with objective prioritization, Automatica, 57 (2015), 189-198.  doi: 10.1016/j.automatica.2015.04.024.  Google Scholar

[14]

C. M. Kellett, A compendium of comparison function results, Mathematics of Control, Signals, and Systems, 26 (2014), 339-374.  doi: 10.1007/s00498-014-0128-8.  Google Scholar

[15]

K. LaabidiF. Bouani and M. Ksouri, Multi-criteria optimization in nonlinear predictive control, Mathematics and Computers in Simulation, 76 (2008), 363-374.  doi: 10.1016/j.matcom.2007.04.002.  Google Scholar

[16]

J. Lee and D. Angeli, Cooperative distributed model predictive control for linear plants subject to convex economic objectives, in Proceeding of the 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), 2011, 3434-3439. Google Scholar

[17]

F. LogistB. HouskaM. Diehl and J. F. Van Impe, Robust multi-objective optimal control of uncertain (bio)chemical processes, Chemical Engineering Science, 66 (2011), 4670-4682.   Google Scholar

[18]

D. Q. MayneJ. B. RawlingsC. V. Rao and P. O. M. Scokaert, Constrained model predictive control: Stability and optimality, Automatica, 36 (2000), 789-814.  doi: 10.1016/S0005-1098(99)00214-9.  Google Scholar

[19]

M. A. MüllerM. Reble and F. Allgöwer, Cooperative control of dynamically decoupled systems via distributed model predictive control, International Journal of Robust and Nonlinear Control, 22 (2012), 1376-1397.  doi: 10.1002/rnc.2826.  Google Scholar

[20]

J. B. Rawlings and D. Q. Mayne, Model Predictive Control: Theory and Design, Nob Hill Publishing, 2009. Google Scholar

[21]

Y. Sawaragi, H. Nakayama and T. Tanino, Theory of Multiobjective Optimization, Elsevier, 1985.  Google Scholar

[22]

B. T. StewartA. N. VenkatJ. B. RawlingsS. J. Wright and G. Pannocchia, Cooperative distributed model predictive control, Control Letters, 59 (2010), 460-469.  doi: 10.1016/j.sysconle.2010.06.005.  Google Scholar

[23]

S. E. Tuna, M. J. Messina and A. R. Teel, Shorter horizons for model predictive control, in Proceedings of the 2006 American Control Conference, IEEE, Minneapolis, Minnesota, USA, 2006,863-868. Google Scholar

[24]

V. M. Zavala and A. Flores-Tlacuahuac, Stability of multiobjective predictive control: A utopia-tracking approach, Automatica, 48 (2012), 2627-2632.  doi: 10.1016/j.automatica.2012.06.066.  Google Scholar

show all references

References:
[1]

A. Bemporad and D. Muñoz de la Peña, Multiobjective model predictive control, Automatica, 45 (2009), 2823-2830.  doi: 10.1016/j.automatica.2009.09.032.  Google Scholar

[2]

D. P. Bertsekas, Dynamic Programming and Optimal Control, vol. 1, 2nd edition, Athena Scientific, 2000. Google Scholar

[3]

J. Doležal, Existence of optimal solutions in general discrete systems, Kybernetika, 11 (1975), 301-312.   Google Scholar

[4]

M. Ehrgott, Multicriteria Optimization, 2nd edition, Springer, 2005.  Google Scholar

[5]

J. J. V. GarcíaV. G. GarayE. I. GordoF. A. Fano and M. L. Sukia, Intelligent multi-objective nonlinear model predictive control (imo-nmpc): Towards the "on-line" optimization of highly complex control problems, Expert systems with applications, 39 (2012), 6527-6540.   Google Scholar

[6]

P. Giselsson and A. Rantzer, Distributed Model Predictive Control with Suboptimality and Stability Guarantees, in 49th IEEE Conference on Decision and Control (CDC), IEEE, 2010, 7272-7277. Google Scholar

[7]

L. Grüne and J. Pannek, Nonlinear Model Predictive Control: Theory and Algorithms, 2nd edition, Communications and Control Engineering, Springer, 2017. doi: 10.1007/978-3-319-46024-6.  Google Scholar

[8]

L. Grüne and A. Rantzer, On the infinite horizon performance of receding horizon controllers, IEEE Transactions on Automatic Control, 53 (2008), 2100-2111.  doi: 10.1109/TAC.2008.927799.  Google Scholar

[9]

L. Grüne and M. Stieler, Performance guarantees for multiobjective Model Predictive Control, in Proceedings of the IEEE 56th Annual Conference on Decision and Control (CDC) Held in Melbourne, Australia, 2017, Melbourne, Australia, 2017, 5545-5550. Google Scholar

[10]

C. M. Hackl, F. Larcher, A. Dötlinger and R. M. Kennel, Is multiple-objective model-predictive control "optimal"?, in 2013 IEEE International Symposium on Sensorless Control for Electrical Drives and Predictive Control of Electrical Drives and Power Electronics (SLED/PRECEDE), 2013. Google Scholar

[11]

A. Hajiloo, W. Xie and X. Ren, Multi-objective robust model predictive control using game theory, in Proceedings of the 2015 IEEE International Conference on Information and Automation, IEEE, 2015, 2026-2030. Google Scholar

[12]

N. Hayek, Infinite horizon multiobjective optimal control problems in the discrete time case, Optimization, 60 (2011), 509-529.  doi: 10.1080/02331930903480352.  Google Scholar

[13]

D. HeL. Wang and J. Sun, On stability of multiobjective NMPC with objective prioritization, Automatica, 57 (2015), 189-198.  doi: 10.1016/j.automatica.2015.04.024.  Google Scholar

[14]

C. M. Kellett, A compendium of comparison function results, Mathematics of Control, Signals, and Systems, 26 (2014), 339-374.  doi: 10.1007/s00498-014-0128-8.  Google Scholar

[15]

K. LaabidiF. Bouani and M. Ksouri, Multi-criteria optimization in nonlinear predictive control, Mathematics and Computers in Simulation, 76 (2008), 363-374.  doi: 10.1016/j.matcom.2007.04.002.  Google Scholar

[16]

J. Lee and D. Angeli, Cooperative distributed model predictive control for linear plants subject to convex economic objectives, in Proceeding of the 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), 2011, 3434-3439. Google Scholar

[17]

F. LogistB. HouskaM. Diehl and J. F. Van Impe, Robust multi-objective optimal control of uncertain (bio)chemical processes, Chemical Engineering Science, 66 (2011), 4670-4682.   Google Scholar

[18]

D. Q. MayneJ. B. RawlingsC. V. Rao and P. O. M. Scokaert, Constrained model predictive control: Stability and optimality, Automatica, 36 (2000), 789-814.  doi: 10.1016/S0005-1098(99)00214-9.  Google Scholar

[19]

M. A. MüllerM. Reble and F. Allgöwer, Cooperative control of dynamically decoupled systems via distributed model predictive control, International Journal of Robust and Nonlinear Control, 22 (2012), 1376-1397.  doi: 10.1002/rnc.2826.  Google Scholar

[20]

J. B. Rawlings and D. Q. Mayne, Model Predictive Control: Theory and Design, Nob Hill Publishing, 2009. Google Scholar

[21]

Y. Sawaragi, H. Nakayama and T. Tanino, Theory of Multiobjective Optimization, Elsevier, 1985.  Google Scholar

[22]

B. T. StewartA. N. VenkatJ. B. RawlingsS. J. Wright and G. Pannocchia, Cooperative distributed model predictive control, Control Letters, 59 (2010), 460-469.  doi: 10.1016/j.sysconle.2010.06.005.  Google Scholar

[23]

S. E. Tuna, M. J. Messina and A. R. Teel, Shorter horizons for model predictive control, in Proceedings of the 2006 American Control Conference, IEEE, Minneapolis, Minnesota, USA, 2006,863-868. Google Scholar

[24]

V. M. Zavala and A. Flores-Tlacuahuac, Stability of multiobjective predictive control: A utopia-tracking approach, Automatica, 48 (2012), 2627-2632.  doi: 10.1016/j.automatica.2012.06.066.  Google Scholar

Figure 1.  Schematic illustration of a Pareto front for two objectives.
Figure 2.  Two bicriterion optimization problems with $ {\mathbb{R}}^2_{\geq 0} $-compact set of admissible values. The red parts indicate the nodominated values.
Figure 3.  Step (1) in Algorithm 2.
Figure 4.  Accumulated performance of the six objectives (blue) compared to the value of the Pareto optimal control sequence $ {\bf{u}}^{\star, N}_{x_0} $ from step (0), Algorithm 2 (red).
Figure 5.  Trajectories of the six systems (phase plots).
Figure 6.  Performance without the constraints in step (1), Algorithm 2.
Figure 7.  Trajectories and accumulated performance without terminal constraints using Algorithm 3.
Figure 8.  Trajectories and accumulated performance without terminal constraints using Algorithm 4.
[1]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[2]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[3]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[4]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[5]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[6]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[7]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[8]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[9]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[10]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

[11]

John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026

[12]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[13]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[14]

Alessandro Gondolo, Fernando Guevara Vasquez. Characterization and synthesis of Rayleigh damped elastodynamic networks. Networks & Heterogeneous Media, 2014, 9 (2) : 299-314. doi: 10.3934/nhm.2014.9.299

[15]

M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202

[16]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[17]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[18]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[19]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[20]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (168)
  • HTML views (508)
  • Cited by (3)

Other articles
by authors

[Back to Top]