August  2019, 24(8): 3905-3928. doi: 10.3934/dcdsb.2018336

Multiobjective model predictive control for stabilizing cost criteria

Chair of Applied Mathematics, Department of Mathematics, University of Bayreuth, 95440 Bayreuth, Germany

Received  April 2018 Revised  September 2018 Published  January 2019

Fund Project: The authors are supported by DFG Grant Gr 1569/13-1.

In this paper we demonstrate how multiobjective optimal control problems can be solved by means of model predictive control. For our analysis we restrict ourselves to finite-dimensional control systems in discrete time. We show that convergence of the MPC closed-loop trajectory as well as upper bounds on the closed-loop performance for all objectives can be established if the ‘right’ Pareto-optimal control sequence is chosen in the iterations. It turns out that approximating the whole Pareto front is not necessary for that choice. Moreover, we provide statements on the relation of the MPC performance to the values of Pareto-optimal solutions on the infinite horizon, i.e. we investigate on the inifinite-horizon optimality of our MPC controller.

Citation: Lars Grüne, Marleen Stieler. Multiobjective model predictive control for stabilizing cost criteria. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3905-3928. doi: 10.3934/dcdsb.2018336
References:
[1]

A. Bemporad and D. Muñoz de la Peña, Multiobjective model predictive control, Automatica, 45 (2009), 2823-2830.  doi: 10.1016/j.automatica.2009.09.032.  Google Scholar

[2]

D. P. Bertsekas, Dynamic Programming and Optimal Control, vol. 1, 2nd edition, Athena Scientific, 2000. Google Scholar

[3]

J. Doležal, Existence of optimal solutions in general discrete systems, Kybernetika, 11 (1975), 301-312.   Google Scholar

[4]

M. Ehrgott, Multicriteria Optimization, 2nd edition, Springer, 2005.  Google Scholar

[5]

J. J. V. GarcíaV. G. GarayE. I. GordoF. A. Fano and M. L. Sukia, Intelligent multi-objective nonlinear model predictive control (imo-nmpc): Towards the "on-line" optimization of highly complex control problems, Expert systems with applications, 39 (2012), 6527-6540.   Google Scholar

[6]

P. Giselsson and A. Rantzer, Distributed Model Predictive Control with Suboptimality and Stability Guarantees, in 49th IEEE Conference on Decision and Control (CDC), IEEE, 2010, 7272-7277. Google Scholar

[7]

L. Grüne and J. Pannek, Nonlinear Model Predictive Control: Theory and Algorithms, 2nd edition, Communications and Control Engineering, Springer, 2017. doi: 10.1007/978-3-319-46024-6.  Google Scholar

[8]

L. Grüne and A. Rantzer, On the infinite horizon performance of receding horizon controllers, IEEE Transactions on Automatic Control, 53 (2008), 2100-2111.  doi: 10.1109/TAC.2008.927799.  Google Scholar

[9]

L. Grüne and M. Stieler, Performance guarantees for multiobjective Model Predictive Control, in Proceedings of the IEEE 56th Annual Conference on Decision and Control (CDC) Held in Melbourne, Australia, 2017, Melbourne, Australia, 2017, 5545-5550. Google Scholar

[10]

C. M. Hackl, F. Larcher, A. Dötlinger and R. M. Kennel, Is multiple-objective model-predictive control "optimal"?, in 2013 IEEE International Symposium on Sensorless Control for Electrical Drives and Predictive Control of Electrical Drives and Power Electronics (SLED/PRECEDE), 2013. Google Scholar

[11]

A. Hajiloo, W. Xie and X. Ren, Multi-objective robust model predictive control using game theory, in Proceedings of the 2015 IEEE International Conference on Information and Automation, IEEE, 2015, 2026-2030. Google Scholar

[12]

N. Hayek, Infinite horizon multiobjective optimal control problems in the discrete time case, Optimization, 60 (2011), 509-529.  doi: 10.1080/02331930903480352.  Google Scholar

[13]

D. HeL. Wang and J. Sun, On stability of multiobjective NMPC with objective prioritization, Automatica, 57 (2015), 189-198.  doi: 10.1016/j.automatica.2015.04.024.  Google Scholar

[14]

C. M. Kellett, A compendium of comparison function results, Mathematics of Control, Signals, and Systems, 26 (2014), 339-374.  doi: 10.1007/s00498-014-0128-8.  Google Scholar

[15]

K. LaabidiF. Bouani and M. Ksouri, Multi-criteria optimization in nonlinear predictive control, Mathematics and Computers in Simulation, 76 (2008), 363-374.  doi: 10.1016/j.matcom.2007.04.002.  Google Scholar

[16]

J. Lee and D. Angeli, Cooperative distributed model predictive control for linear plants subject to convex economic objectives, in Proceeding of the 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), 2011, 3434-3439. Google Scholar

[17]

F. LogistB. HouskaM. Diehl and J. F. Van Impe, Robust multi-objective optimal control of uncertain (bio)chemical processes, Chemical Engineering Science, 66 (2011), 4670-4682.   Google Scholar

[18]

D. Q. MayneJ. B. RawlingsC. V. Rao and P. O. M. Scokaert, Constrained model predictive control: Stability and optimality, Automatica, 36 (2000), 789-814.  doi: 10.1016/S0005-1098(99)00214-9.  Google Scholar

[19]

M. A. MüllerM. Reble and F. Allgöwer, Cooperative control of dynamically decoupled systems via distributed model predictive control, International Journal of Robust and Nonlinear Control, 22 (2012), 1376-1397.  doi: 10.1002/rnc.2826.  Google Scholar

[20]

J. B. Rawlings and D. Q. Mayne, Model Predictive Control: Theory and Design, Nob Hill Publishing, 2009. Google Scholar

[21]

Y. Sawaragi, H. Nakayama and T. Tanino, Theory of Multiobjective Optimization, Elsevier, 1985.  Google Scholar

[22]

B. T. StewartA. N. VenkatJ. B. RawlingsS. J. Wright and G. Pannocchia, Cooperative distributed model predictive control, Control Letters, 59 (2010), 460-469.  doi: 10.1016/j.sysconle.2010.06.005.  Google Scholar

[23]

S. E. Tuna, M. J. Messina and A. R. Teel, Shorter horizons for model predictive control, in Proceedings of the 2006 American Control Conference, IEEE, Minneapolis, Minnesota, USA, 2006,863-868. Google Scholar

[24]

V. M. Zavala and A. Flores-Tlacuahuac, Stability of multiobjective predictive control: A utopia-tracking approach, Automatica, 48 (2012), 2627-2632.  doi: 10.1016/j.automatica.2012.06.066.  Google Scholar

show all references

References:
[1]

A. Bemporad and D. Muñoz de la Peña, Multiobjective model predictive control, Automatica, 45 (2009), 2823-2830.  doi: 10.1016/j.automatica.2009.09.032.  Google Scholar

[2]

D. P. Bertsekas, Dynamic Programming and Optimal Control, vol. 1, 2nd edition, Athena Scientific, 2000. Google Scholar

[3]

J. Doležal, Existence of optimal solutions in general discrete systems, Kybernetika, 11 (1975), 301-312.   Google Scholar

[4]

M. Ehrgott, Multicriteria Optimization, 2nd edition, Springer, 2005.  Google Scholar

[5]

J. J. V. GarcíaV. G. GarayE. I. GordoF. A. Fano and M. L. Sukia, Intelligent multi-objective nonlinear model predictive control (imo-nmpc): Towards the "on-line" optimization of highly complex control problems, Expert systems with applications, 39 (2012), 6527-6540.   Google Scholar

[6]

P. Giselsson and A. Rantzer, Distributed Model Predictive Control with Suboptimality and Stability Guarantees, in 49th IEEE Conference on Decision and Control (CDC), IEEE, 2010, 7272-7277. Google Scholar

[7]

L. Grüne and J. Pannek, Nonlinear Model Predictive Control: Theory and Algorithms, 2nd edition, Communications and Control Engineering, Springer, 2017. doi: 10.1007/978-3-319-46024-6.  Google Scholar

[8]

L. Grüne and A. Rantzer, On the infinite horizon performance of receding horizon controllers, IEEE Transactions on Automatic Control, 53 (2008), 2100-2111.  doi: 10.1109/TAC.2008.927799.  Google Scholar

[9]

L. Grüne and M. Stieler, Performance guarantees for multiobjective Model Predictive Control, in Proceedings of the IEEE 56th Annual Conference on Decision and Control (CDC) Held in Melbourne, Australia, 2017, Melbourne, Australia, 2017, 5545-5550. Google Scholar

[10]

C. M. Hackl, F. Larcher, A. Dötlinger and R. M. Kennel, Is multiple-objective model-predictive control "optimal"?, in 2013 IEEE International Symposium on Sensorless Control for Electrical Drives and Predictive Control of Electrical Drives and Power Electronics (SLED/PRECEDE), 2013. Google Scholar

[11]

A. Hajiloo, W. Xie and X. Ren, Multi-objective robust model predictive control using game theory, in Proceedings of the 2015 IEEE International Conference on Information and Automation, IEEE, 2015, 2026-2030. Google Scholar

[12]

N. Hayek, Infinite horizon multiobjective optimal control problems in the discrete time case, Optimization, 60 (2011), 509-529.  doi: 10.1080/02331930903480352.  Google Scholar

[13]

D. HeL. Wang and J. Sun, On stability of multiobjective NMPC with objective prioritization, Automatica, 57 (2015), 189-198.  doi: 10.1016/j.automatica.2015.04.024.  Google Scholar

[14]

C. M. Kellett, A compendium of comparison function results, Mathematics of Control, Signals, and Systems, 26 (2014), 339-374.  doi: 10.1007/s00498-014-0128-8.  Google Scholar

[15]

K. LaabidiF. Bouani and M. Ksouri, Multi-criteria optimization in nonlinear predictive control, Mathematics and Computers in Simulation, 76 (2008), 363-374.  doi: 10.1016/j.matcom.2007.04.002.  Google Scholar

[16]

J. Lee and D. Angeli, Cooperative distributed model predictive control for linear plants subject to convex economic objectives, in Proceeding of the 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), 2011, 3434-3439. Google Scholar

[17]

F. LogistB. HouskaM. Diehl and J. F. Van Impe, Robust multi-objective optimal control of uncertain (bio)chemical processes, Chemical Engineering Science, 66 (2011), 4670-4682.   Google Scholar

[18]

D. Q. MayneJ. B. RawlingsC. V. Rao and P. O. M. Scokaert, Constrained model predictive control: Stability and optimality, Automatica, 36 (2000), 789-814.  doi: 10.1016/S0005-1098(99)00214-9.  Google Scholar

[19]

M. A. MüllerM. Reble and F. Allgöwer, Cooperative control of dynamically decoupled systems via distributed model predictive control, International Journal of Robust and Nonlinear Control, 22 (2012), 1376-1397.  doi: 10.1002/rnc.2826.  Google Scholar

[20]

J. B. Rawlings and D. Q. Mayne, Model Predictive Control: Theory and Design, Nob Hill Publishing, 2009. Google Scholar

[21]

Y. Sawaragi, H. Nakayama and T. Tanino, Theory of Multiobjective Optimization, Elsevier, 1985.  Google Scholar

[22]

B. T. StewartA. N. VenkatJ. B. RawlingsS. J. Wright and G. Pannocchia, Cooperative distributed model predictive control, Control Letters, 59 (2010), 460-469.  doi: 10.1016/j.sysconle.2010.06.005.  Google Scholar

[23]

S. E. Tuna, M. J. Messina and A. R. Teel, Shorter horizons for model predictive control, in Proceedings of the 2006 American Control Conference, IEEE, Minneapolis, Minnesota, USA, 2006,863-868. Google Scholar

[24]

V. M. Zavala and A. Flores-Tlacuahuac, Stability of multiobjective predictive control: A utopia-tracking approach, Automatica, 48 (2012), 2627-2632.  doi: 10.1016/j.automatica.2012.06.066.  Google Scholar

Figure 1.  Schematic illustration of a Pareto front for two objectives.
Figure 2.  Two bicriterion optimization problems with $ {\mathbb{R}}^2_{\geq 0} $-compact set of admissible values. The red parts indicate the nodominated values.
Figure 3.  Step (1) in Algorithm 2.
Figure 4.  Accumulated performance of the six objectives (blue) compared to the value of the Pareto optimal control sequence $ {\bf{u}}^{\star, N}_{x_0} $ from step (0), Algorithm 2 (red).
Figure 5.  Trajectories of the six systems (phase plots).
Figure 6.  Performance without the constraints in step (1), Algorithm 2.
Figure 7.  Trajectories and accumulated performance without terminal constraints using Algorithm 3.
Figure 8.  Trajectories and accumulated performance without terminal constraints using Algorithm 4.
[1]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[2]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021001

[3]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[4]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[5]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[6]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[7]

Duy Phan, Lassi Paunonen. Finite-dimensional controllers for robust regulation of boundary control systems. Mathematical Control & Related Fields, 2021, 11 (1) : 95-117. doi: 10.3934/mcrf.2020029

[8]

Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021003

[9]

Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128

[10]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[11]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[12]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[13]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[14]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[15]

Max E. Gilmore, Chris Guiver, Hartmut Logemann. Sampled-data integral control of multivariable linear infinite-dimensional systems with input nonlinearities. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021001

[16]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[17]

Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021011

[18]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[19]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[20]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (161)
  • HTML views (481)
  • Cited by (3)

Other articles
by authors

[Back to Top]