• Previous Article
    Blow-up of solutions to semi-discrete parabolic-elliptic Keller-Segel models
  • DCDS-B Home
  • This Issue
  • Next Article
    Global existence and asymptotic behavior of global smooth solutions to the Kirchhoff equations with strong nonlinear damping
September  2019, 24(9): 4739-4753. doi: 10.3934/dcdsb.2019028

Dynamics of a predator-prey model with state-dependent carrying capacity

1. 

Department of Applied Mathematics, Yuncheng University, Yuncheng, Shanxi 044000, China

2. 

Department of Mathematics and Statistics, University of New Brunswick, Fredericton, NB E3B5A3, Canada

3. 

North-West Plateau Institute of Biology, Key Laboratory of Ecology Restoration in Cold Region in Qinghai Province, the Chinese Academy of Sciences, Xining, Qinghai 810001, China

* Corresponding author

Received  September 2017 Revised  May 2018 Published  February 2019

Vegetation and plateau pika are two key species in alpine meadow ecosystems on the Tibetan Plateau. It is frequently observed on the field that plateau pika reduces the carrying capacity of vegetation and the mortality of plateau pika increases along with the increasing height of vegetation. This motivates us to propose and study a predator-prey model with state-dependent carrying capacity. Theoretical analysis and numerical simulations show that the model exhibits complex dynamics including the occurrence of saddle-node bifurcation, transcritical bifurcation and Hopf bifurcation, and the coexistence of two stable equilibria.

Citation: Hanwu Liu, Lin Wang, Fengqin Zhang, Qiuying Li, Huakun Zhou. Dynamics of a predator-prey model with state-dependent carrying capacity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4739-4753. doi: 10.3934/dcdsb.2019028
References:
[1]

T. Akiyama and K. Kawamura, Grassland degradation in China: Methods of monitoring management and restoration, Grassl. Sci., 53 (2007), 1-7. doi: 10.1111/j.1744-697X.2007.00073.x. Google Scholar

[2] S. Cai and Z. Qian, Introduction of Qualitative Theory of Ordinary Differential Equations, Higher Education Press, Beijing, 1994. Google Scholar
[3] A. Hastings and L. Gross, Encyclopedia of Theoretical Ecology, University of California Press, Berkeley, 2012. Google Scholar
[4]

C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, Mem. Entomol. Soc. Can., 97 (1965), 5-60. doi: 10.4039/entm9745fv. Google Scholar

[5]

G. E. Hutchinson, Circular causal systems in ecology, Ann. N.Y. Acad. Sci., 50 (1948), 221-246. doi: 10.1111/j.1749-6632.1948.tb39854.x. Google Scholar

[6]

C. Lai and A. Smith, Keystone status of plateau pika (Ochotona curzoniae): Effect of control on biodiversity of native birds, Biodivers. Conserv., 12 (2003), 1901-1912. Google Scholar

[7]

Q. LiJ. Li and Q. Dong, Study on the effect of fencing on Kobrecia parva alpine meadow pasture at different degrading stages in Yangtze and Yellow river headwaters, Pratacultural Sci., 23 (2006), 16-21. Google Scholar

[8]

Y. LiX. Zhao and G. Cao, Analyses on climates and vegetation productivity background at Haibei alpine meadow ecosystem research station, Plateau Meteorol, 23 (2004), 558-567. Google Scholar

[9]

W. LiuX. WangL. Zhou and H. Zhou, Studies on destruction, prevention and control of plateau pikas in Kobresia pygmaea meadow, Acta Theriol. Sin., 23 (2003), 214-219. Google Scholar

[10] Z. Ma and Y. Zhou, The Qualitative and Stability Methods of Ordinary Differential Equations, Science Press, Beijing, 2001. Google Scholar
[11]

J. QuM. Liu and M. Yang, Reproduction of plateau pika (Ochotona curzoniae) on the Qinghai-Tibetan plateau, Eur. J. Wildl. Res., 58 (2012), 269-277. Google Scholar

[12]

M. L. Rosenzweig and R. H. Macarthur, Graphical representation and stability conditions of predator-prey interactions, Am. Nat., 97 (1963), 209-223. Google Scholar

[13]

S. Shen and Y. Chen, Preliminary research on ecology of the plateau pica at Dawu area, Guoluo, Qinghai province, Acta Theriol. Sin., 4 (1984), 107-115. Google Scholar

[14]

Y. Shi, On the influences of range land vegetation to the density of plateau pika (Ochotona curzoniae), Acta Theriol. Sin., 3 (1983), 181-187. Google Scholar

[15]

A. T. Smith and J. M. Foggin, The plateau pika (Ochotona curzoniae) is a keystone species for biodiversity on the Tibetan plateau, Anim. Conserv., 2 (1999), 235-240. Google Scholar

[16]

J. WangW. Wei and Y. Zhang, The sex ratio of plateau pika's population, Acta Theriol. Sin., 24 (2004), 177-181. Google Scholar

[17]

X. Wang and K. Dai, Natural longevity of plateau pika (Ochotona curzoniae), Acta Theriol. Sin., 9 (1989), 56-62. Google Scholar

[18]

X. Wang and A. T. Smith, On the natural winter mortality of the plateau pika (Ochotona Curzoniae), Acta Theriol. Sin., 8 (1988), 152-156. Google Scholar

[19]

X. Wang and X. Fu, Sustainable management of alpine meadows on the Tibetan Plateau: Problems overlooked and suggestions for change, Ambio, 33 (2004), 169-171. Google Scholar

[20]

X. WeiS. LiP. Yang and H. Cheng, Soil erosion and vegetation succession in alpine Kobresia steppe meadow caused by plateau pika-A case study of Nagqu County, Tibet, Chinese Geographical Science, 17 (2007), 75-81. Google Scholar

[21]

L. WenS. Dong and Y. Li, Effect of degradation intensity on grassland ecosystem services in the alpine region of Qinghai-Tibetan plateau, China, Plos One, 8 (2013), 1-7. doi: 10.1371/journal.pone.0058432. Google Scholar

[22]

Z. Yang and X. Jiang, The harm of plateau pika on grassland vegetation and its control threshold value, Pratacultural Sci., 19 (2002), 63-65. Google Scholar

[23]

B. YinJ. Wang and W. Wei, Population reproductive characteristics of plateau pika in alpine meadow ecosystem, Acta Theriol. Sin., 24 (2004), 222-228. Google Scholar

[24]

Y. ZhangX. Yuan and D. Niu, Response of plateau pika burrow density to vegetation management in an alpine meadow, Maqu County, Gansu, Acta Prataculturae Sin., 25 (2016), 87-94. Google Scholar

[25]

X. Zhao and X. Zhou, Ecological basis of alpine meadow ecosystem management in Tibet: Haibei alpine meadow ecosystem research station, Ambio, 28 (1999), 642-647. Google Scholar

[26]

H. ZhouL. Zhou and X. Zhao, Stability of alpine meadow ecosystem on the Qinghai-Tibetan Plateau, Chin. Sci. Bull., 51 (2006), 320-327. doi: 10.1007/s11434-006-0320-4. Google Scholar

show all references

References:
[1]

T. Akiyama and K. Kawamura, Grassland degradation in China: Methods of monitoring management and restoration, Grassl. Sci., 53 (2007), 1-7. doi: 10.1111/j.1744-697X.2007.00073.x. Google Scholar

[2] S. Cai and Z. Qian, Introduction of Qualitative Theory of Ordinary Differential Equations, Higher Education Press, Beijing, 1994. Google Scholar
[3] A. Hastings and L. Gross, Encyclopedia of Theoretical Ecology, University of California Press, Berkeley, 2012. Google Scholar
[4]

C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, Mem. Entomol. Soc. Can., 97 (1965), 5-60. doi: 10.4039/entm9745fv. Google Scholar

[5]

G. E. Hutchinson, Circular causal systems in ecology, Ann. N.Y. Acad. Sci., 50 (1948), 221-246. doi: 10.1111/j.1749-6632.1948.tb39854.x. Google Scholar

[6]

C. Lai and A. Smith, Keystone status of plateau pika (Ochotona curzoniae): Effect of control on biodiversity of native birds, Biodivers. Conserv., 12 (2003), 1901-1912. Google Scholar

[7]

Q. LiJ. Li and Q. Dong, Study on the effect of fencing on Kobrecia parva alpine meadow pasture at different degrading stages in Yangtze and Yellow river headwaters, Pratacultural Sci., 23 (2006), 16-21. Google Scholar

[8]

Y. LiX. Zhao and G. Cao, Analyses on climates and vegetation productivity background at Haibei alpine meadow ecosystem research station, Plateau Meteorol, 23 (2004), 558-567. Google Scholar

[9]

W. LiuX. WangL. Zhou and H. Zhou, Studies on destruction, prevention and control of plateau pikas in Kobresia pygmaea meadow, Acta Theriol. Sin., 23 (2003), 214-219. Google Scholar

[10] Z. Ma and Y. Zhou, The Qualitative and Stability Methods of Ordinary Differential Equations, Science Press, Beijing, 2001. Google Scholar
[11]

J. QuM. Liu and M. Yang, Reproduction of plateau pika (Ochotona curzoniae) on the Qinghai-Tibetan plateau, Eur. J. Wildl. Res., 58 (2012), 269-277. Google Scholar

[12]

M. L. Rosenzweig and R. H. Macarthur, Graphical representation and stability conditions of predator-prey interactions, Am. Nat., 97 (1963), 209-223. Google Scholar

[13]

S. Shen and Y. Chen, Preliminary research on ecology of the plateau pica at Dawu area, Guoluo, Qinghai province, Acta Theriol. Sin., 4 (1984), 107-115. Google Scholar

[14]

Y. Shi, On the influences of range land vegetation to the density of plateau pika (Ochotona curzoniae), Acta Theriol. Sin., 3 (1983), 181-187. Google Scholar

[15]

A. T. Smith and J. M. Foggin, The plateau pika (Ochotona curzoniae) is a keystone species for biodiversity on the Tibetan plateau, Anim. Conserv., 2 (1999), 235-240. Google Scholar

[16]

J. WangW. Wei and Y. Zhang, The sex ratio of plateau pika's population, Acta Theriol. Sin., 24 (2004), 177-181. Google Scholar

[17]

X. Wang and K. Dai, Natural longevity of plateau pika (Ochotona curzoniae), Acta Theriol. Sin., 9 (1989), 56-62. Google Scholar

[18]

X. Wang and A. T. Smith, On the natural winter mortality of the plateau pika (Ochotona Curzoniae), Acta Theriol. Sin., 8 (1988), 152-156. Google Scholar

[19]

X. Wang and X. Fu, Sustainable management of alpine meadows on the Tibetan Plateau: Problems overlooked and suggestions for change, Ambio, 33 (2004), 169-171. Google Scholar

[20]

X. WeiS. LiP. Yang and H. Cheng, Soil erosion and vegetation succession in alpine Kobresia steppe meadow caused by plateau pika-A case study of Nagqu County, Tibet, Chinese Geographical Science, 17 (2007), 75-81. Google Scholar

[21]

L. WenS. Dong and Y. Li, Effect of degradation intensity on grassland ecosystem services in the alpine region of Qinghai-Tibetan plateau, China, Plos One, 8 (2013), 1-7. doi: 10.1371/journal.pone.0058432. Google Scholar

[22]

Z. Yang and X. Jiang, The harm of plateau pika on grassland vegetation and its control threshold value, Pratacultural Sci., 19 (2002), 63-65. Google Scholar

[23]

B. YinJ. Wang and W. Wei, Population reproductive characteristics of plateau pika in alpine meadow ecosystem, Acta Theriol. Sin., 24 (2004), 222-228. Google Scholar

[24]

Y. ZhangX. Yuan and D. Niu, Response of plateau pika burrow density to vegetation management in an alpine meadow, Maqu County, Gansu, Acta Prataculturae Sin., 25 (2016), 87-94. Google Scholar

[25]

X. Zhao and X. Zhou, Ecological basis of alpine meadow ecosystem management in Tibet: Haibei alpine meadow ecosystem research station, Ambio, 28 (1999), 642-647. Google Scholar

[26]

H. ZhouL. Zhou and X. Zhao, Stability of alpine meadow ecosystem on the Qinghai-Tibetan Plateau, Chin. Sci. Bull., 51 (2006), 320-327. doi: 10.1007/s11434-006-0320-4. Google Scholar

Figure 1.  A bifurcation diagram of Model (1) with $ r_{1} = 0.227 $, $ \alpha = 4000 $, $ \mu = 0.001 $, $ r_{2} = 0.95 $, $ K = 4000 $, $ \lambda = 0.3225 $, $ q = 0.36 $, for $ p $ varying from $ 6 $ to $ 12 $. The solid curves represent stable equilibria, while the dotted curves represent unstable equilibria
Figure 2.  A bifurcation diagram of Model (1) with $ r_{1} = 0.227 $, $ \alpha = 1000 $, $ \mu = 0.0001 $, $ r_{2} = 0.95 $, $ K = 4000 $, $ \lambda = 0.3225 $, $ q = 0.36 $ and $ p $ varying from $ 1.2 $ to $ 2.2 $. The solid curves represent stable equilibria or limit cycle, while the dotted curves represent unstable equilibria
Figure 3.  Two solution trajectories of (1) are converging to a stable limit cycle. Parameter values used ere $ r_{1} = 0.227 $, $ \mu = 0.0001 $, $ r_{2} = 0.95 $, $ K = 4000 $, $ \lambda = 0.3225 $, $ q = 0.36 $, $ \alpha = 1000 $ and $ p = 2 $; Two sets of initial conditions are $ (3500,1000) $ and $ (1500,1000) $
Figure 4.  Two stable equilibria $ E_{0} $ and $ E_{2} $ coexist. Here $ r_{1} = 0.227 $, $ \alpha = 1000 $, $ p = 1.68 $, $ \mu = 0.0001 $, $ r_{2} = 0.95 $, $ K = 4000 $, $ \lambda = 0.3225 $, $ q = 0.36 $
Figure 5.  The outer closed curve $ L $: $ OE_{0}FGHO $ around $ E_{2} $
Table 1.  The default values of parameters in simulations
Parameter Value Reference
$ r_{1} $ $ 0.227\;year^{-1} $ [8]
$ K $ $ 4000\;kg $ [1,8,9,22]
$ q $ $ 0.36\;kg\cdot head^{-1}\cdot year^{-1} $ [23]
$ r_{2} $ $ 0.95\;year^{-1} $ [19,20]
$ p $ $ 1\sim12\;year^{-1} $ [13,14,17,24]
$ \lambda $ $ 0.32256\;kg\cdot head^{-1} $ [10]
Parameter Value Reference
$ r_{1} $ $ 0.227\;year^{-1} $ [8]
$ K $ $ 4000\;kg $ [1,8,9,22]
$ q $ $ 0.36\;kg\cdot head^{-1}\cdot year^{-1} $ [23]
$ r_{2} $ $ 0.95\;year^{-1} $ [19,20]
$ p $ $ 1\sim12\;year^{-1} $ [13,14,17,24]
$ \lambda $ $ 0.32256\;kg\cdot head^{-1} $ [10]
[1]

Jicai Huang, Sanhong Liu, Shigui Ruan, Xinan Zhang. Bogdanov-Takens bifurcation of codimension 3 in a predator-prey model with constant-yield predator harvesting. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1041-1055. doi: 10.3934/cpaa.2016.15.1041

[2]

Jicai Huang, Yijun Gong, Shigui Ruan. Bifurcation analysis in a predator-prey model with constant-yield predator harvesting. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2101-2121. doi: 10.3934/dcdsb.2013.18.2101

[3]

Qing Zhu, Huaqin Peng, Xiaoxiao Zheng, Huafeng Xiao. Bifurcation analysis of a stage-structured predator-prey model with prey refuge. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2195-2209. doi: 10.3934/dcdss.2019141

[4]

Shanshan Chen, Jianshe Yu. Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 43-62. doi: 10.3934/dcds.2018002

[5]

Eric Avila-Vales, Gerardo García-Almeida, Erika Rivero-Esquivel. Bifurcation and spatiotemporal patterns in a Bazykin predator-prey model with self and cross diffusion and Beddington-DeAngelis response. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 717-740. doi: 10.3934/dcdsb.2017035

[6]

Qizhen Xiao, Binxiang Dai. Heteroclinic bifurcation for a general predator-prey model with Allee effect and state feedback impulsive control strategy. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1065-1081. doi: 10.3934/mbe.2015.12.1065

[7]

Peng Feng. On a diffusive predator-prey model with nonlinear harvesting. Mathematical Biosciences & Engineering, 2014, 11 (4) : 807-821. doi: 10.3934/mbe.2014.11.807

[8]

Ronald E. Mickens. Analysis of a new class of predator-prey model. Conference Publications, 2001, 2001 (Special) : 265-269. doi: 10.3934/proc.2001.2001.265

[9]

Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507

[10]

Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129

[11]

Xiaoling Li, Guangping Hu, Zhaosheng Feng, Dongliang Li. A periodic and diffusive predator-prey model with disease in the prey. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 445-461. doi: 10.3934/dcdss.2017021

[12]

Yang Lu, Xia Wang, Shengqiang Liu. A non-autonomous predator-prey model with infected prey. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3817-3836. doi: 10.3934/dcdsb.2018082

[13]

Xiaoyuan Chang, Junjie Wei. Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge. Mathematical Biosciences & Engineering, 2013, 10 (4) : 979-996. doi: 10.3934/mbe.2013.10.979

[14]

Sílvia Cuadrado. Stability of equilibria of a predator-prey model of phenotype evolution. Mathematical Biosciences & Engineering, 2009, 6 (4) : 701-718. doi: 10.3934/mbe.2009.6.701

[15]

Gianni Gilioli, Sara Pasquali, Fabrizio Ruggeri. Nonlinear functional response parameter estimation in a stochastic predator-prey model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 75-96. doi: 10.3934/mbe.2012.9.75

[16]

Shanshan Chen. Nonexistence of nonconstant positive steady states of a diffusive predator-prey model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 477-485. doi: 10.3934/cpaa.2018026

[17]

Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057

[18]

Haiying Jing, Zhaoyu Yang. The impact of state feedback control on a predator-prey model with functional response. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 607-614. doi: 10.3934/dcdsb.2004.4.607

[19]

Wenshu Zhou, Hongxing Zhao, Xiaodan Wei, Guokai Xu. Existence of positive steady states for a predator-prey model with diffusion. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2189-2201. doi: 10.3934/cpaa.2013.12.2189

[20]

Antoni Leon Dawidowicz, Anna Poskrobko. Stability problem for the age-dependent predator-prey model. Evolution Equations & Control Theory, 2018, 7 (1) : 79-93. doi: 10.3934/eect.2018005

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (138)
  • HTML views (394)
  • Cited by (0)

[Back to Top]