• Previous Article
    optimal investment and dividend policy in an insurance company: A varied bound for dividend rates
  • DCDS-B Home
  • This Issue
  • Next Article
    Long term behavior of stochastic discrete complex Ginzburg-Landau equations with time delays in weighted spaces
September  2019, 24(9): 5107-5120. doi: 10.3934/dcdsb.2019045

Superfluidity phase transitions for liquid $ ^{4} $He system

1. 

School of Medical Informatics and Engineering, Southwest Medical University, Luzhou, Sichuan 646000, China

2. 

Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China

* Corresponding author: Dongpei Zhang

Received  September 2018 Published  February 2019

The main objective of this paper is to investigate the superfluidity phase transition theory-modeling and analysis-for liquid $ ^{4} $He system. Based on the new Gibbs free energy and the potential-descending principle proposed recently in [18,25], the dynamic equations describing the $ \lambda $-transition and solid-liquid transition of liquid $ ^{4} $He system are derived. Further, by the dynamical transition theory, the two obtained models are proven to exhibit Ehrenfest second-order transition and first-order transition, respectively, which are well consistent with the physical experimental results.

Citation: Jiayan Yang, Dongpei Zhang. Superfluidity phase transitions for liquid $ ^{4} $He system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 5107-5120. doi: 10.3934/dcdsb.2019045
References:
[1]

J. F. Allen and A. D. Misener, Flow of liquid Helium Ⅱ, Nature, 141 (1938), 75. doi: 10.1038/141075a0. Google Scholar

[2]

A. Berti and V. Berti, A thermodynamically consistent Ginzburg-Landau model for superfluid transition in liquid helium, Z. Angew. Math. Phys., 64 (2013), 1387-1397. doi: 10.1007/s00033-012-0280-2. Google Scholar

[3]

A. BertiV. Berti and I. Bochicchio, Global and exponential attractors for a Ginzburg-Landau model of superfluidity, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 247-271. doi: 10.3934/dcdss.2011.4.247. Google Scholar

[4]

A. Berti, V. Berti and I. Bochicchio, Asymptotic behavior of Ginzburg-Landau equations of superfluidity, Communications to SIMAI Congress, 3 (2009), 12pp.Google Scholar

[5]

V. Berti and M. Fabrizio, Well-posedness for a Ginzburg-Landau model in superfluidity, in New Trends in Fluid and Solid Models, World Scientific, (2009), 1–9. doi: 10.1142/9789814293228_0001. Google Scholar

[6]

V. Berti and M. Fabrizio, Existence and uniqueness for a mathematical model in superfluidity, Math. Meth. Appl. Sci., 31 (2008), 1441-1459. doi: 10.1002/mma.981. Google Scholar

[7]

M. CampostriniM. HasenbuschA. Pelissetto and E. Vicari, Theoretical estimates of the critical exponents of the superfluid transition in $^4$He by lattice methods, Phys. Rev. B, 74 (2006), 2952-2961. Google Scholar

[8]

A. Einstein, Quantentheorie des einatomigen idealen Gases, Sitzsber. Preuss. Akad., 3 (2006). doi: 10.1002/3527608958.ch27. Google Scholar

[9]

M. Fabrizio, A Ginzburg-Landau model for the phase transition in Helium Ⅱ, Z. Angew. Math. Phys., 61 (2010), 329-340. doi: 10.1007/s00033-009-0011-5. Google Scholar

[10]

M. Fabrizio and M. S. Mongiovì, Phase transition in liquid $^4$He by a mean field model, J. Therm. Stresses, 36 (2013), 135-151. Google Scholar

[11]

H. A. Gersch and J. M. Tanner, Solid-superfluid transition in $^4$He at absolute zero, Phys. Rev., 139 (1965), 1769-1782. Google Scholar

[12]

V. L. Ginzburg and L. D. Landau, On the theory of superconductivity, Zh. Eksp. Teor. Fiz., 20 (1950), 1064-1082. doi: 10.1007/978-3-540-68008-6_4. Google Scholar

[13]

Z. B. Hou and L. M. Li, Global attractor of the liquid Helium-4 system in $H^{k}$ space, Appl. Mech. Mater., 444/445 (2014), 731-737. doi: 10.4028/www.scientific.net/AMM.444-445.731. Google Scholar

[14]

P. Kapitza, Viscosity of liquid Helium below the $\lambda$-point, Nature, 141 (1938), 74.Google Scholar

[15]

S. Koh, Shear viscosity of liquid helium 4 above the lambda point, Physics, 2008.Google Scholar

[16]

L. D. Landau, Theory of superfluidity of Helium-Ⅱ, Zh. Eksp. Teor. Fiz., 11 (1941).Google Scholar

[17]

T. LindenauM. L. RistigJ. W. Clark and K. A. Gernoth, Bose-Einstein condensation and the $\lambda$-transition in liquid Helium, J. Low Temp. Phys., 129 (2002), 143-170. Google Scholar

[18]

R. K. Liu, T. Ma, S. H. Wang and J. Y. Yang, Thermodynamical potentials of classical and quantum systems, Discrete Contin. Dyn. Syst. Ser. B, (2018) (to appear). doi: 10.3934/dcdsb.2018214. Google Scholar

[19]

F. London, The $\lambda$-phenomenon of liquid Helium and the Bose-Einstein degeneracy, Nature, 141 (1938), 643-644. Google Scholar

[20]

T. Ma, R. K. Liu and J. Y. Yang, Physical World from the Mathematical Point of View: Statistical Physics and Critical Phase Transition Theory(in Chinese), Science Press, Beijing, 2017.Google Scholar

[21]

T. Ma and S. H. Wang, Bifurcation Theory and Applications, World Scientific Publishing Co. Pte. Ltd.: Hackensack, NJ, 2005. doi: 10.1142/5827. Google Scholar

[22]

T. Ma and S. H. Wang, Phase Transition Dynamics, Springer-Verlag, New York, 2014. doi: 10.1007/978-1-4614-8963-4. Google Scholar

[23]

T. Ma and S. H. Wang, Dynamic model and phase transitions for liquid helium, J. Math. Phys., 49 (2008), 073304, 18 pp. doi: 10.1063/1.2957943. Google Scholar

[24]

T. Ma and S. H. Wang, Phase transition and separation for mixture of liquid He-3 and He-4, in Lev Davidovich Landau and his Impact on Contemporary Theoretical Physics, Nova Science Publishers Inc; UK ed., (2010), 107–119.Google Scholar

[25]

T. Ma and S. H. Wang, Dynamic law of physical motion and potential-descending principle, J. Math. Study, 50 (2017), 215-241. doi: 10.4208/jms.v50n3.17.02. Google Scholar

[26]

V. N. Minasyan and V. N. Samoilov, The condition of existence of the Bose-Einstein condensation in the superfluid liquid helium, Phys. Lett. A, 374 (2010), 2792-2797. doi: 10.1016/j.physleta.2010.04.072. Google Scholar

[27]

M. S. Mongiovì and L. Saluto, Effects of heat flux on $\lambda$-transition in liquid $^4$He, Meccanica, 49 (2014), 2125-2137. doi: 10.1007/s11012-014-9922-0. Google Scholar

[28]

O. Penrose and L. Onsager, Bose-Einstein condensation and liquid Helium, Phys. Rev., 104 (1956), 576-584. doi: 10.4324/9780429494116-14. Google Scholar

[29]

J. K. Perron, M. O. Kimball, K. P. Mooney and F. M. Gasparini, Critical behavior of coupled $^4$He regions near the superfluid transition, Phys. Rev. B, 87 (2013), 094507.Google Scholar

[30]

L. Tisza, Transport phenomena in Helium Ⅱ, Nature, 141 (1938), 913. doi: 10.1038/141913a0. Google Scholar

show all references

References:
[1]

J. F. Allen and A. D. Misener, Flow of liquid Helium Ⅱ, Nature, 141 (1938), 75. doi: 10.1038/141075a0. Google Scholar

[2]

A. Berti and V. Berti, A thermodynamically consistent Ginzburg-Landau model for superfluid transition in liquid helium, Z. Angew. Math. Phys., 64 (2013), 1387-1397. doi: 10.1007/s00033-012-0280-2. Google Scholar

[3]

A. BertiV. Berti and I. Bochicchio, Global and exponential attractors for a Ginzburg-Landau model of superfluidity, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 247-271. doi: 10.3934/dcdss.2011.4.247. Google Scholar

[4]

A. Berti, V. Berti and I. Bochicchio, Asymptotic behavior of Ginzburg-Landau equations of superfluidity, Communications to SIMAI Congress, 3 (2009), 12pp.Google Scholar

[5]

V. Berti and M. Fabrizio, Well-posedness for a Ginzburg-Landau model in superfluidity, in New Trends in Fluid and Solid Models, World Scientific, (2009), 1–9. doi: 10.1142/9789814293228_0001. Google Scholar

[6]

V. Berti and M. Fabrizio, Existence and uniqueness for a mathematical model in superfluidity, Math. Meth. Appl. Sci., 31 (2008), 1441-1459. doi: 10.1002/mma.981. Google Scholar

[7]

M. CampostriniM. HasenbuschA. Pelissetto and E. Vicari, Theoretical estimates of the critical exponents of the superfluid transition in $^4$He by lattice methods, Phys. Rev. B, 74 (2006), 2952-2961. Google Scholar

[8]

A. Einstein, Quantentheorie des einatomigen idealen Gases, Sitzsber. Preuss. Akad., 3 (2006). doi: 10.1002/3527608958.ch27. Google Scholar

[9]

M. Fabrizio, A Ginzburg-Landau model for the phase transition in Helium Ⅱ, Z. Angew. Math. Phys., 61 (2010), 329-340. doi: 10.1007/s00033-009-0011-5. Google Scholar

[10]

M. Fabrizio and M. S. Mongiovì, Phase transition in liquid $^4$He by a mean field model, J. Therm. Stresses, 36 (2013), 135-151. Google Scholar

[11]

H. A. Gersch and J. M. Tanner, Solid-superfluid transition in $^4$He at absolute zero, Phys. Rev., 139 (1965), 1769-1782. Google Scholar

[12]

V. L. Ginzburg and L. D. Landau, On the theory of superconductivity, Zh. Eksp. Teor. Fiz., 20 (1950), 1064-1082. doi: 10.1007/978-3-540-68008-6_4. Google Scholar

[13]

Z. B. Hou and L. M. Li, Global attractor of the liquid Helium-4 system in $H^{k}$ space, Appl. Mech. Mater., 444/445 (2014), 731-737. doi: 10.4028/www.scientific.net/AMM.444-445.731. Google Scholar

[14]

P. Kapitza, Viscosity of liquid Helium below the $\lambda$-point, Nature, 141 (1938), 74.Google Scholar

[15]

S. Koh, Shear viscosity of liquid helium 4 above the lambda point, Physics, 2008.Google Scholar

[16]

L. D. Landau, Theory of superfluidity of Helium-Ⅱ, Zh. Eksp. Teor. Fiz., 11 (1941).Google Scholar

[17]

T. LindenauM. L. RistigJ. W. Clark and K. A. Gernoth, Bose-Einstein condensation and the $\lambda$-transition in liquid Helium, J. Low Temp. Phys., 129 (2002), 143-170. Google Scholar

[18]

R. K. Liu, T. Ma, S. H. Wang and J. Y. Yang, Thermodynamical potentials of classical and quantum systems, Discrete Contin. Dyn. Syst. Ser. B, (2018) (to appear). doi: 10.3934/dcdsb.2018214. Google Scholar

[19]

F. London, The $\lambda$-phenomenon of liquid Helium and the Bose-Einstein degeneracy, Nature, 141 (1938), 643-644. Google Scholar

[20]

T. Ma, R. K. Liu and J. Y. Yang, Physical World from the Mathematical Point of View: Statistical Physics and Critical Phase Transition Theory(in Chinese), Science Press, Beijing, 2017.Google Scholar

[21]

T. Ma and S. H. Wang, Bifurcation Theory and Applications, World Scientific Publishing Co. Pte. Ltd.: Hackensack, NJ, 2005. doi: 10.1142/5827. Google Scholar

[22]

T. Ma and S. H. Wang, Phase Transition Dynamics, Springer-Verlag, New York, 2014. doi: 10.1007/978-1-4614-8963-4. Google Scholar

[23]

T. Ma and S. H. Wang, Dynamic model and phase transitions for liquid helium, J. Math. Phys., 49 (2008), 073304, 18 pp. doi: 10.1063/1.2957943. Google Scholar

[24]

T. Ma and S. H. Wang, Phase transition and separation for mixture of liquid He-3 and He-4, in Lev Davidovich Landau and his Impact on Contemporary Theoretical Physics, Nova Science Publishers Inc; UK ed., (2010), 107–119.Google Scholar

[25]

T. Ma and S. H. Wang, Dynamic law of physical motion and potential-descending principle, J. Math. Study, 50 (2017), 215-241. doi: 10.4208/jms.v50n3.17.02. Google Scholar

[26]

V. N. Minasyan and V. N. Samoilov, The condition of existence of the Bose-Einstein condensation in the superfluid liquid helium, Phys. Lett. A, 374 (2010), 2792-2797. doi: 10.1016/j.physleta.2010.04.072. Google Scholar

[27]

M. S. Mongiovì and L. Saluto, Effects of heat flux on $\lambda$-transition in liquid $^4$He, Meccanica, 49 (2014), 2125-2137. doi: 10.1007/s11012-014-9922-0. Google Scholar

[28]

O. Penrose and L. Onsager, Bose-Einstein condensation and liquid Helium, Phys. Rev., 104 (1956), 576-584. doi: 10.4324/9780429494116-14. Google Scholar

[29]

J. K. Perron, M. O. Kimball, K. P. Mooney and F. M. Gasparini, Critical behavior of coupled $^4$He regions near the superfluid transition, Phys. Rev. B, 87 (2013), 094507.Google Scholar

[30]

L. Tisza, Transport phenomena in Helium Ⅱ, Nature, 141 (1938), 913. doi: 10.1038/141913a0. Google Scholar

Figure 1.  $ T $-$ p $ phase diagram of $ ^{4} $He
Figure 2.  The diagram for critical control parameters $ (T_c, p_c) $
Figure 3.  The theoretical $ T $-$ p $ phase diagram for $ ^{4} $He
Figure 4.  The topology of steady state solutions for (24)
Figure 5.  The $ p $-$ \rho_n $ dynamical phase diagram
[1]

Mohan Mallick, R. Shivaji, Byungjae Son, S. Sundar. Bifurcation and multiplicity results for a class of $n\times n$ $p$-Laplacian system. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1295-1304. doi: 10.3934/cpaa.2018062

[2]

Tingting Wu, Jian Gao, Yun Gao, Fang-Wei Fu. $ {{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{4}}$-additive cyclic codes. Advances in Mathematics of Communications, 2018, 12 (4) : 641-657. doi: 10.3934/amc.2018038

[3]

Antonio Cossidente, Francesco Pavese, Leo Storme. Optimal subspace codes in $ {{\rm{PG}}}(4,q) $. Advances in Mathematics of Communications, 2019, 13 (3) : 393-404. doi: 10.3934/amc.2019025

[4]

Ilwoo Cho, Palle Jorgense. Free probability on $ C^{*}$-algebras induced by hecke algebras over primes. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 2221-2252. doi: 10.3934/dcdss.2019143

[5]

Vladimir Chepyzhov, Alexei Ilyin, Sergey Zelik. Strong trajectory and global $\mathbf{W^{1,p}}$-attractors for the damped-driven Euler system in $\mathbb R^2$. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1835-1855. doi: 10.3934/dcdsb.2017109

[6]

Juntao Sun, Tsung-Fang Wu, Zhaosheng Feng. Non-autonomous Schrödinger-Poisson system in $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1889-1933. doi: 10.3934/dcds.2018077

[7]

Xiaopeng Zhao. Space-time decay estimates of solutions to liquid crystal system in $\mathbb{R}^3$. Communications on Pure & Applied Analysis, 2019, 18 (1) : 1-13. doi: 10.3934/cpaa.2019001

[8]

E. Compaan. A note on global existence for the Zakharov system on $ \mathbb{T} $. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2473-2489. doi: 10.3934/cpaa.2019112

[9]

Theodore Tachim Medjo. Pullback $ \mathbb{V}-$attractor of a three dimensional globally modified two-phase flow model. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2141-2169. doi: 10.3934/dcds.2018088

[10]

Sugata Gangopadhyay, Goutam Paul, Nishant Sinha, Pantelimon Stǎnicǎ. Generalized nonlinearity of $ S$-boxes. Advances in Mathematics of Communications, 2018, 12 (1) : 115-122. doi: 10.3934/amc.2018007

[11]

Gyula Csató. On the isoperimetric problem with perimeter density $r^p$. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2729-2749. doi: 10.3934/cpaa.2018129

[12]

Haisheng Tan, Liuyan Liu, Hongyu Liang. Total $\{k\}$-domination in special graphs. Mathematical Foundations of Computing, 2018, 1 (3) : 255-263. doi: 10.3934/mfc.2018011

[13]

Pak Tung Ho. Prescribing the $ Q' $-curvature in three dimension. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2285-2294. doi: 10.3934/dcds.2019096

[14]

Ekta Mittal, Sunil Joshi. Note on a $ k $-generalised fractional derivative. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 797-804. doi: 10.3934/dcdss.2020045

[15]

Eun-Kyung Cho, Cunsheng Ding, Jong Yoon Hyun. A spectral characterisation of $ t $-designs and its applications. Advances in Mathematics of Communications, 2019, 13 (3) : 477-503. doi: 10.3934/amc.2019030

[16]

Gang Wang, Yuan Zhang. $ Z $-eigenvalue exclusion theorems for tensors. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-12. doi: 10.3934/jimo.2019039

[17]

Caili Sang, Zhen Chen. $ E $-eigenvalue localization sets for tensors. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-19. doi: 10.3934/jimo.2019042

[18]

Annalisa Cesaroni, Serena Dipierro, Matteo Novaga, Enrico Valdinoci. Minimizers of the $ p $-oscillation functional. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 1-15. doi: 10.3934/dcds.2019231

[19]

Zalman Balanov, Yakov Krasnov. On good deformations of $ A_m $-singularities. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1851-1866. doi: 10.3934/dcdss.2019122

[20]

Teresa Alberico, Costantino Capozzoli, Luigi D'Onofrio, Roberta Schiattarella. $G$-convergence for non-divergence elliptic operators with VMO coefficients in $\mathbb R^3$. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 129-137. doi: 10.3934/dcdss.2019009

2018 Impact Factor: 1.008

Article outline

Figures and Tables

[Back to Top]