American Institute of Mathematical Sciences

August  2019, 24(8): 4247-4269. doi: 10.3934/dcdsb.2019080

Computation of the stochastic basin of attraction by rigorous construction of a Lyapunov function

 1 Faculty of Physical Sciences, University of Iceland, 107 Reykjavik, Iceland 2 Department of Mathematics, University of Sussex, Falmer BN1 9QH, United Kingdom 3 Svensk Exportkredit, Klarabergsviadukten 61-63, 111 64 Stockholm, Sweden

Received  April 2018 Revised  October 2018 Published  April 2019

Fund Project: The research for this paper was supported by the Icelandic Research Fund (Rannís) in the project `Lyapunov Methods and Stochastic Stability' (152429-051), which is gratefully acknowledged.

The γ-basin of attraction of the zero solution of a nonlinear stochastic differential equation can be determined through a pair of a local and a non-local Lyapunov function. In this paper, we construct a non-local Lyapunov function by solving a second-order PDE using meshless collocation. We provide a-posteriori error estimates which guarantee that the constructed function is indeed a non-local Lyapunov function. Combining this method with the computation of a local Lyapunov function for the linearisation around an equilibrium of the stochastic differential equation in question, a problem which is much more manageable than computing a Lyapunov function in a large area containing the equilibrium, we provide a rigorous estimate of the stochastic γ-basin of attraction of the equilibrium.

Citation: Hjörtur Björnsson, Sigurdur Hafstein, Peter Giesl, Enrico Scalas, Skuli Gudmundsson. Computation of the stochastic basin of attraction by rigorous construction of a Lyapunov function. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4247-4269. doi: 10.3934/dcdsb.2019080
References:

show all references

References:
Above: the computed non-local Lyapunov function $v$ for system (5.1). Below: the function $Lv$, approximating $-10^{-3}$
Non-local Lyapunov function for system (5.2) with $\theta = 1$. The non-local Lyapunov functions looks very similar to the one computed in [3]
The table shows the Wendland function $\psi_0(r): = \phi_{8, 6}(cr)$ as well as the related functions $\psi_1$ to $\psi_6$, defined recursively by $\psi_{k+1}(r): = \frac{\partial_r \psi_k(r)}{r}$ for $k = 0, 1, \ldots, 5$
 $\phi_{8, 6}$ $\psi_0(r)$ $[46,189(cr)^6+73,206 (cr)^5+54,915(cr)^4+24,500(cr)^3$ $+6,755(cr)^2+1,078cr+77]\, (1- cr)^{14}_+$ $\psi_1(r)$ $-380\, c^2\, [2,431(cr)^5+2,931(cr)^4+1,638(cr)^3+518(cr)^2$ $+91cr+7]\, (1- cr)^{13}_+$ $\psi_2(r)$ $12,920\, c^4\, [1,287(cr)^4+1,108(cr)^3+426(cr)^2$ $+84cr+7]\, (1- cr)^{12}_+$ $\psi_3(r)$ $-620,160\, c^6\, [429 (cr)^3+239 (cr)^2+55 cr+5]\, (1- cr)^{11}_+$ $\psi_4(r)$ $112,869,120\, c^8\, [33(cr)^2+10cr+1]\, (1- cr)_+^{10}$ $\psi_5(r)$ $-4,966,241,280\, c^{10}\, [9cr+1]\, (1- cr)_+^{9}$ $\psi_6(r)$ $446,961,715,200\, c^{12}\, (1- cr)_+^{8}$
 $\phi_{8, 6}$ $\psi_0(r)$ $[46,189(cr)^6+73,206 (cr)^5+54,915(cr)^4+24,500(cr)^3$ $+6,755(cr)^2+1,078cr+77]\, (1- cr)^{14}_+$ $\psi_1(r)$ $-380\, c^2\, [2,431(cr)^5+2,931(cr)^4+1,638(cr)^3+518(cr)^2$ $+91cr+7]\, (1- cr)^{13}_+$ $\psi_2(r)$ $12,920\, c^4\, [1,287(cr)^4+1,108(cr)^3+426(cr)^2$ $+84cr+7]\, (1- cr)^{12}_+$ $\psi_3(r)$ $-620,160\, c^6\, [429 (cr)^3+239 (cr)^2+55 cr+5]\, (1- cr)^{11}_+$ $\psi_4(r)$ $112,869,120\, c^8\, [33(cr)^2+10cr+1]\, (1- cr)_+^{10}$ $\psi_5(r)$ $-4,966,241,280\, c^{10}\, [9cr+1]\, (1- cr)_+^{9}$ $\psi_6(r)$ $446,961,715,200\, c^{12}\, (1- cr)_+^{8}$
The table shows the Wendland function $\psi_0(r): = \phi_{7, 6}(cr)$ as well as the related functions $\psi_1$ to $\psi_6$, defined recursively by $\psi_{k+1}(r): = \frac{\partial_r \psi_k(r)}{r}$ for $k = 0, 1, \ldots, 5$
 $\phi_{7, 6}$ $\psi_0(r)$ $[4,096(cr)^6+7,059 (cr)^5+5,751(cr)^4+2,782(cr)^3+830(cr)^2$ $+143cr+11]\, (1- cr)^{13}_+$ $\psi_1(r)$ $-38\, c^2\, [2,048(cr)^5+2,697(cr)^4+1,644(cr)^3+566(cr)^2$ $+108cr+9]\, (1- cr)^{12}_+$ $\psi_2(r)$ $10,336\, c^4\, [128(cr)^4+121(cr)^3+51(cr)^2+11cr+1]\, (1- cr)^{11}_+$ $\psi_3(r)$ $-62,016\, c^6\, [320 (cr)^3+197 (cr)^2+50 cr+5]\, (1- cr)^{10}_+$ $\psi_4(r)$ $3,224,832\, c^8\, [80(cr)^2+27cr+3]\, (1- cr)_+^{9}$ $\psi_5(r)$ $-354,731,520\, c^{10}\, [8cr+1]\, (1- cr)_+^{8}$ $\psi_6(r)$ $25,540,669,440\,c^{12}\,(1- cr)_+^{7}$
 $\phi_{7, 6}$ $\psi_0(r)$ $[4,096(cr)^6+7,059 (cr)^5+5,751(cr)^4+2,782(cr)^3+830(cr)^2$ $+143cr+11]\, (1- cr)^{13}_+$ $\psi_1(r)$ $-38\, c^2\, [2,048(cr)^5+2,697(cr)^4+1,644(cr)^3+566(cr)^2$ $+108cr+9]\, (1- cr)^{12}_+$ $\psi_2(r)$ $10,336\, c^4\, [128(cr)^4+121(cr)^3+51(cr)^2+11cr+1]\, (1- cr)^{11}_+$ $\psi_3(r)$ $-62,016\, c^6\, [320 (cr)^3+197 (cr)^2+50 cr+5]\, (1- cr)^{10}_+$ $\psi_4(r)$ $3,224,832\, c^8\, [80(cr)^2+27cr+3]\, (1- cr)_+^{9}$ $\psi_5(r)$ $-354,731,520\, c^{10}\, [8cr+1]\, (1- cr)_+^{8}$ $\psi_6(r)$ $25,540,669,440\,c^{12}\,(1- cr)_+^{7}$
The table shows values for $\psi_{k, i}: = \sup_{r\in[0, \infty)} |\psi_i(r)| r^k$ for the Wendland functions $\psi_0(r): = \phi_{8, 6}(cr)$ and $\psi_0(r): = \phi_{7, 6}(cr)$
 $\psi_{k, i}$ $\phi_{8, 6}$ $\phi_{7, 6}$ $\psi_{6, 6}$ $3.148511062 \cdot 10^7\cdot c^6$ $3.240130299 \cdot 10^6\cdot c^6$ $\psi_{5, 5}$ $2.363249538\cdot 10^6\cdot c^5$ $2.588617377\cdot 10^5\cdot c^5$ $\psi_{5, 4}$ $6.409097287\cdot 10^6\cdot c^6$ $6.534280933\cdot 10^5\cdot c^6$ $\psi_{4, 4}$ $1.947997580\cdot 10^5\cdot c^4$ $2.262550039\cdot 10^4\cdot c^4$ $\psi_{4, 3}$ $6.000016519\cdot 10^5 \cdot c^5$ $6.515237949\cdot 10^4 \cdot c^5$ $\psi_{4, 2}$ $2.215560450\cdot 10^6\cdot c^6$ $2.237953342\cdot 10^5\cdot c^6$ $\psi_{3, 3}$ $1.807542870\cdot 10^4\cdot c^3$ $2.219149087\cdot 10^3\cdot c^3$ $\psi_{3, 2}$ $6.618581621\cdot 10^4\cdot c^4$ $7.625999381\cdot 10^3\cdot c^4$ $\psi_{3, 1}$ $3.172360616 \cdot 10^5 \cdot c^5$ $3.414789975 \cdot 10^4 \cdot c^5$ $\psi_{3, 0}$ $3.1008\cdot 10^6\cdot c^6$ $3.1008\cdot 10^5\cdot c^6$ $\psi_{2, 2}$ $1.970990855\cdot 10^3\cdot c^2$ $2.550970282\cdot 10^2\cdot c^2$ $\psi_{2, 1}$ $9.418422390\cdot 10^3\cdot c^3$ $1.147899628\cdot 10^3\cdot c^3$ $\psi_{2, 0}$ $9.044\cdot 10^4\cdot c^4$ $1.0336\cdot 10^4\cdot c^4$ $\psi_{1, 1}$ $2.767275907\cdot 10^2\cdot c$ $3.766803387\cdot 10^1\cdot c$ $\psi_{1, 0}$ $2.66\cdot 10^3\cdot c^2$ $3.42\cdot 10^2\cdot c^2$
 $\psi_{k, i}$ $\phi_{8, 6}$ $\phi_{7, 6}$ $\psi_{6, 6}$ $3.148511062 \cdot 10^7\cdot c^6$ $3.240130299 \cdot 10^6\cdot c^6$ $\psi_{5, 5}$ $2.363249538\cdot 10^6\cdot c^5$ $2.588617377\cdot 10^5\cdot c^5$ $\psi_{5, 4}$ $6.409097287\cdot 10^6\cdot c^6$ $6.534280933\cdot 10^5\cdot c^6$ $\psi_{4, 4}$ $1.947997580\cdot 10^5\cdot c^4$ $2.262550039\cdot 10^4\cdot c^4$ $\psi_{4, 3}$ $6.000016519\cdot 10^5 \cdot c^5$ $6.515237949\cdot 10^4 \cdot c^5$ $\psi_{4, 2}$ $2.215560450\cdot 10^6\cdot c^6$ $2.237953342\cdot 10^5\cdot c^6$ $\psi_{3, 3}$ $1.807542870\cdot 10^4\cdot c^3$ $2.219149087\cdot 10^3\cdot c^3$ $\psi_{3, 2}$ $6.618581621\cdot 10^4\cdot c^4$ $7.625999381\cdot 10^3\cdot c^4$ $\psi_{3, 1}$ $3.172360616 \cdot 10^5 \cdot c^5$ $3.414789975 \cdot 10^4 \cdot c^5$ $\psi_{3, 0}$ $3.1008\cdot 10^6\cdot c^6$ $3.1008\cdot 10^5\cdot c^6$ $\psi_{2, 2}$ $1.970990855\cdot 10^3\cdot c^2$ $2.550970282\cdot 10^2\cdot c^2$ $\psi_{2, 1}$ $9.418422390\cdot 10^3\cdot c^3$ $1.147899628\cdot 10^3\cdot c^3$ $\psi_{2, 0}$ $9.044\cdot 10^4\cdot c^4$ $1.0336\cdot 10^4\cdot c^4$ $\psi_{1, 1}$ $2.767275907\cdot 10^2\cdot c$ $3.766803387\cdot 10^1\cdot c$ $\psi_{1, 0}$ $2.66\cdot 10^3\cdot c^2$ $3.42\cdot 10^2\cdot c^2$
 [1] Peter Giesl. Construction of a global Lyapunov function using radial basis functions with a single operator. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 101-124. doi: 10.3934/dcdsb.2007.7.101 [2] Martin D. Buhmann, Slawomir Dinew. Limits of radial basis function interpolants. Communications on Pure & Applied Analysis, 2007, 6 (3) : 569-585. doi: 10.3934/cpaa.2007.6.569 [3] Sigurdur Hafstein, Skuli Gudmundsson, Peter Giesl, Enrico Scalas. Lyapunov function computation for autonomous linear stochastic differential equations using sum-of-squares programming. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 939-956. doi: 10.3934/dcdsb.2018049 [4] Martin Gugat, Günter Leugering, Ke Wang. Neumann boundary feedback stabilization for a nonlinear wave equation: A strict $H^2$-lyapunov function. Mathematical Control & Related Fields, 2017, 7 (3) : 419-448. doi: 10.3934/mcrf.2017015 [5] Robert Baier, Lars Grüne, Sigurđur Freyr Hafstein. Linear programming based Lyapunov function computation for differential inclusions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 33-56. doi: 10.3934/dcdsb.2012.17.33 [6] Andrei Korobeinikov, Philip K. Maini. A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Mathematical Biosciences & Engineering, 2004, 1 (1) : 57-60. doi: 10.3934/mbe.2004.1.57 [7] Najla Mohammed, Peter Giesl. Grid refinement in the construction of Lyapunov functions using radial basis functions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2453-2476. doi: 10.3934/dcdsb.2015.20.2453 [8] Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369 [9] Juan Li, Wenqiang Li. Controlled reflected mean-field backward stochastic differential equations coupled with value function and related PDEs. Mathematical Control & Related Fields, 2015, 5 (3) : 501-516. doi: 10.3934/mcrf.2015.5.501 [10] Hasib Khan, Cemil Tunc, Aziz Khan. Green function's properties and existence theorems for nonlinear singular-delay-fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020139 [11] Ugo Bessi. The stochastic value function in metric measure spaces. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1819-1839. doi: 10.3934/dcds.2017076 [12] Łukasz Struski, Jacek Tabor. Expansivity implies existence of Hölder continuous Lyapunov function. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3575-3589. doi: 10.3934/dcdsb.2017180 [13] Peter Giesl. Construction of a finite-time Lyapunov function by meshless collocation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2387-2412. doi: 10.3934/dcdsb.2012.17.2387 [14] Piermarco Cannarsa, Peter R. Wolenski. Semiconcavity of the value function for a class of differential inclusions. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 453-466. doi: 10.3934/dcds.2011.29.453 [15] Fabio Camilli, Lars Grüne. Characterizing attraction probabilities via the stochastic Zubov equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 457-468. doi: 10.3934/dcdsb.2003.3.457 [16] Antonio Cañada, Salvador Villegas. Lyapunov inequalities for partial differential equations at radial higher eigenvalues. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 111-122. doi: 10.3934/dcds.2013.33.111 [17] Zhiyou Wu, Fusheng Bai, Guoquan Li, Yongjian Yang. A new auxiliary function method for systems of nonlinear equations. Journal of Industrial & Management Optimization, 2015, 11 (2) : 345-364. doi: 10.3934/jimo.2015.11.345 [18] Yongjian Yang, Zhiyou Wu, Fusheng Bai. A filled function method for constrained nonlinear integer programming. Journal of Industrial & Management Optimization, 2008, 4 (2) : 353-362. doi: 10.3934/jimo.2008.4.353 [19] Yves Edel, Alexander Pott. A new almost perfect nonlinear function which is not quadratic. Advances in Mathematics of Communications, 2009, 3 (1) : 59-81. doi: 10.3934/amc.2009.3.59 [20] Liuyang Yuan, Zhongping Wan, Jingjing Zhang, Bin Sun. A filled function method for solving nonlinear complementarity problem. Journal of Industrial & Management Optimization, 2009, 5 (4) : 911-928. doi: 10.3934/jimo.2009.5.911

2018 Impact Factor: 1.008