May  2019, 24(5): 2237-2250. doi: 10.3934/dcdsb.2019093

Antagonism and negative side-effects in combination therapy for cancer

1. 

Mathematical Bioscience Institute & Department of Mathematics, Ohio State University, Columbus, OH, USA

2. 

Institute for Mathematical Sciences, Renmin University of China, Beijing, China

* Corresponding author: xiulanlai@ruc.edu.cn

Received  January 2018 Revised  January 2019 Published  March 2019

Fund Project: The first author is supported by the Mathematical Biosciences Institute and the National Science Foundation under Grant DMS 0931642

Most clinical trials with combination therapy fail. One of the reasons is that not enough forethought is given to the interaction between the different agents, as well as the potential negative side-effects that may arise in the combined therapy. In the present paper we consider a generic cancer model with combination therapy consisting of chemotherapy agent $ X $ and checkpoint inhibitor $ A $. We use a mathematical model to investigate the results of injecting different amounts $ \gamma_X $ of $ X $ and $ \gamma_A $ of $ A $. We show that there are some regions in the $ (\gamma_A,\gamma_X) $-plane where as increase in $ \gamma_X $ or $ \gamma_A $ actually decreases the tumor volume; such 'regions of antagonism' should be avoided in clinical trials. We also show how to achieve the same level of tumor volume reduction with least negative-side effects, where the side-effects are represented by the level of inflammation of the tumor microenvironment.

Citation: Avner Friedman, Xiulan Lai. Antagonism and negative side-effects in combination therapy for cancer. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2237-2250. doi: 10.3934/dcdsb.2019093
References:
[1]

G. CantelliE. Crosas-Molist1M. Georgouli and V. Sanz-Moreno, TGFB-induced transcription in cancer, Seminars in Cancer Biology, 42 (2017), 60-69. doi: 10.1016/j.semcancer.2016.08.009. Google Scholar

[2]

T. ChanmeeP. OntongK. Konno and N. Itano, Tumor-associated macrophages as major players in the tumor microenvironment, Cancers, 6 (2014), 1670-1690. Google Scholar

[3]

X. Chen and J. J. Oppenheim, Contrasting effects of TNF and anti-TNF on the activation of effector T cells and regulatory T cells in autoimmunity, FEBS Lett., 585 (2011), 3611-3618. Google Scholar

[4]

D. Chen, A. A. Bobko, A. C. Gross, R. Evans, C. B. Marsh and V. V. Khramtsov, et al., Involvement of tumor macrophage HIFs in chemotherapy effectiveness: mathematical modeling of oxygen, pH, and glutathione., PLoS ONE, 9 (2014), e107511.Google Scholar

[5]

X. Cheng, V. Veverka, A. Radhakrishnan, L. C. Waters, F. W. Muskett and S. H. Morgan, et al., Human PD-L1/B7-H1/CD274 Protein, Sino Biological Inc., http://www.sinobiological.com/PD-L1-B7-H1-CD274-Protein-g-533.html.Google Scholar

[6]

T. Condamine and D. I. Gabrilovich, Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function, Trends Immunol., 32 (2011), 19-25. Google Scholar

[7]

A. Friedman and X. Lai, Combination therapy for cancer with oncolytic virus and checkpoint inhibitor: A mathematical model, PLoS ONE, 2 (2018), e0192449.Google Scholar

[8]

W. Hao and A. Friedman, The role of exosomes in pancreatic cancer microenvironment, Bull. Math. Biol., 80 (2018), 1111-1133. doi: 10.1007/s11538-017-0254-9. Google Scholar

[9]

W. Hao and A. Friedman, Mathematical model on Alzheimer's disease, BMC Syst. Biol., 10 (2016), 1-18. Google Scholar

[10]

W. Hao and A Friedman, Serum uPAR as biomarker in breast cancer recurrence: A mathematical model, PLoS ONE, 11 (2016), e0153508.Google Scholar

[11]

W. HaoH. M. KomarP. A. HartD. L. ConwellG. B. Lesinski and A. Friedman, A mathematical model of chronic pancreatitis, Proc. Natl. Acad. Sci. USA, 114 (2017), 5011-5016. doi: 10.1073/pnas.1620264114. Google Scholar

[12]

J. M. T. JancoP. LamichhaneL. Karyampudi and K. L. Knutson, Tumor-infiltrating dendritic cells in cancer pathogenesis, J. Immunol., 194 (2015), 2985-2991. Google Scholar

[13]

Y. KimS. LawlerM. O. NowickiE. A. Chiocca and A. Friedman, A mathematical model for pattern formation of glioma cells outside the tumor spheroid core, J. Theor. Biol., 260 (2009), 359-371. doi: 10.1016/j.jtbi.2009.06.025. Google Scholar

[14]

Y. KimJ. WallaceF. LiM. Ostrowski and A. Friedman, Transformed epithelial cells and fibroblasts/myofibroblasts interaction in breast tumor: a mathematical model and experiments, J. Theor. Biol., 61 (2010), 401-421. doi: 10.1007/s00285-009-0307-2. Google Scholar

[15]

X. Lai and A. Friedman, Combination therapy of cancer with BRAF inhibitor and immune checkpoint inhibitor: A mathematical model, BMC System Biology, 11 (2017), 1-18. Google Scholar

[16]

X. LaiA. StiffM. DugganR. WesolowskiW. E. Carson III and A. Friedman, Modeling combination therapy for breast cancer with BET and immune checkpoint inhibitors, Proc. Natl. Acad. Sci. USA, 115 (2018), 5534-5539. Google Scholar

[17]

K. L. Liao, X. F. Bai and A. Friedman, Mathematical modeling of interleukin-27 induction of anti-tumor T cells response, PLoS ONE, 9 (2014), e91844.Google Scholar

[18]

Y. MaG. V. Shurin1Z. Peiyuan and M. R. Shurin, Dendritic Cells in the Cancer Microenvironment., J. Cancer, 4 (2013), 36-44. Google Scholar

[19]

M. L. Maitland, C. Hudoba, K. L. Snider and M. J. Ratain, Analysis of the yield of phase Ⅱ combination therapy trials in medical oncology, Clinical Cancer Research, (2010), 1078-0432.Google Scholar

[20]

J. MarkowitzR. WesolowskiT. PapenfussT. R. Brooks and W. E. Carson, Myeloid-derived suppressor cells in breast cancer., Breast Cancer Res. Treat., 140 (2013), 13-21. Google Scholar

[21]

R. L. Mautea, S. R. Gordona, A. T. Mayere, M. N. McCrackena, A. Natarajane and N. G. Ring, et al., Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging., Proc. Natl. Acad. Sci. USA, 112 (2015), E6506-E6514.Google Scholar

[22]

P. Muller, K. Martin, S. Theurich, M. V. Bergwelt-Baildon and A. Zippelius, Cancer chemotherapy agents target intratumoral dendritic cells to potentiate antitumor immunity, Oncoimmunology, 3 (2014). doi: 10.4161/21624011.2014.954460. Google Scholar

[23]

M. R. Muppidi and S. George, Immune Checkpoint Inhibitors in Renal Cell Carcinoma, Journal of Targeted Therapies in Cancer 2015, 4 (2015), 47-52. Google Scholar

[24]

E. ObeidR. NandaY.-X. Fu and O. I. Olopade, The role of tumor-associated macrophages in breast cancer progression (review), Int. J. Oncol., 43 (2013), 5-12. Google Scholar

[25]

J. Palucka and J. Banchereau, Cancer immunotherapy via dendritic cells, Nat. Rev. Cancer, 12 (2012), 265-277. Google Scholar

[26]

C. Y. PerrotD. Javelaud and A. Mauviel, Insights into the Transforming Growth Factor-beta Signaling Pathway in Cutaneous Melanoma, Ann. Dermatol., 25 (2013), 135-144. Google Scholar

[27]

R. Saenz, D. Futalan, L. Leutenez, F. Eekhout, J. F. Fecteau and S. Sundelius, et al., TLR4- dependent activation of dendritic cells by an HMGB1-derived peptide adjuvant. J. Transl. Med., 12 (2014), 1-11.Google Scholar

[28]

M. R. SharmaW. M. Stadler and M. J. Ratain, Randomized phase Ⅱ trials: a long-term investment with promising returns, Journal of the National Cancer Institute, 103 (2011), 1093-1100. Google Scholar

[29]

L. Shi, S. Chen, L. Yang and Y. Li, The role of PD-1 and PD-L1 in T-cell immune suppression in patients with hematological malignancies, J. Hematol. Oncol., 6 (2013).Google Scholar

[30]

Y. B. Shui, X. Wang, J. S. Hu, S. P. Wang, C. M. Garcia and et al., Vascular endothelial growth factor expression and signaling in the lens. Invest. Ophthalmol. Vis. Sci., 44 (2003), 3911-3919.Google Scholar

[31]

G. P. SimsD. C. RoweS. T. RietdijkR. Herbst and A. J. Coyle, HMGB1 and RAGE in inflammation and cancer, Annu. Rev. Immunol., 28 (2010), 367-388. Google Scholar

[32]

S. SinghN. MehtaJ. LilanM. B. BudhthokiF. Chao and L. Yong, Initiative action of tumor-associated macrophage during tumor metastasis, Biochim Open, 4 (2017), 8-18. doi: 10.1016/j.biopen.2016.11.002. Google Scholar

[33]

V. UmanskyC. BlattnerC. Gebhardt and J. Utikal, The role of myeloid-derived suppressor cells (MDSC) in cancer progression, Vaccines, 4 (2016), 1-16. doi: 10.3390/vaccines4040036. Google Scholar

[34]

E. Vacchelli, Y. Ma, E. E. Baracco, A. Sistigu, D. P. Enot and F. Pietrocola, et al., Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1, Science, 350 (2015), 972-978.Google Scholar

[35]

T. L. Whiteside, The role of regulatory T cells in cancer immunology, Immunotargets Ther., 4 (2015), 159-171. Google Scholar

[36]

M. E. Young, Estimation of diffusion coefficients of proteins, Biotechnology and Bioengineering, XXII (1980), 947-955. Google Scholar

[37]

L. Zandarashvili, D. Sahu, K. Lee, Y. S. Lee, P. Singh and K. Rajarathnam, et al., Real-time kinetics of high-mobility group box 1 (HMGB1) oxidation in extracellular fluids studied by in situ protein NMR spectroscopy, J. Biol. Chem., 288 (2013), 11621-11627.Google Scholar

[38]

J. Zhang, M. B. Patel, R. Griffiths, A. Mao, Y. soo Song and N. S. Karlovich, et al., Tumor necrosis factor-alpha produced in the kidney contributes to angiotensin Ⅱ-dependent hypertension, Hypertension, 64 (2014), 1275-1281.Google Scholar

show all references

References:
[1]

G. CantelliE. Crosas-Molist1M. Georgouli and V. Sanz-Moreno, TGFB-induced transcription in cancer, Seminars in Cancer Biology, 42 (2017), 60-69. doi: 10.1016/j.semcancer.2016.08.009. Google Scholar

[2]

T. ChanmeeP. OntongK. Konno and N. Itano, Tumor-associated macrophages as major players in the tumor microenvironment, Cancers, 6 (2014), 1670-1690. Google Scholar

[3]

X. Chen and J. J. Oppenheim, Contrasting effects of TNF and anti-TNF on the activation of effector T cells and regulatory T cells in autoimmunity, FEBS Lett., 585 (2011), 3611-3618. Google Scholar

[4]

D. Chen, A. A. Bobko, A. C. Gross, R. Evans, C. B. Marsh and V. V. Khramtsov, et al., Involvement of tumor macrophage HIFs in chemotherapy effectiveness: mathematical modeling of oxygen, pH, and glutathione., PLoS ONE, 9 (2014), e107511.Google Scholar

[5]

X. Cheng, V. Veverka, A. Radhakrishnan, L. C. Waters, F. W. Muskett and S. H. Morgan, et al., Human PD-L1/B7-H1/CD274 Protein, Sino Biological Inc., http://www.sinobiological.com/PD-L1-B7-H1-CD274-Protein-g-533.html.Google Scholar

[6]

T. Condamine and D. I. Gabrilovich, Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function, Trends Immunol., 32 (2011), 19-25. Google Scholar

[7]

A. Friedman and X. Lai, Combination therapy for cancer with oncolytic virus and checkpoint inhibitor: A mathematical model, PLoS ONE, 2 (2018), e0192449.Google Scholar

[8]

W. Hao and A. Friedman, The role of exosomes in pancreatic cancer microenvironment, Bull. Math. Biol., 80 (2018), 1111-1133. doi: 10.1007/s11538-017-0254-9. Google Scholar

[9]

W. Hao and A. Friedman, Mathematical model on Alzheimer's disease, BMC Syst. Biol., 10 (2016), 1-18. Google Scholar

[10]

W. Hao and A Friedman, Serum uPAR as biomarker in breast cancer recurrence: A mathematical model, PLoS ONE, 11 (2016), e0153508.Google Scholar

[11]

W. HaoH. M. KomarP. A. HartD. L. ConwellG. B. Lesinski and A. Friedman, A mathematical model of chronic pancreatitis, Proc. Natl. Acad. Sci. USA, 114 (2017), 5011-5016. doi: 10.1073/pnas.1620264114. Google Scholar

[12]

J. M. T. JancoP. LamichhaneL. Karyampudi and K. L. Knutson, Tumor-infiltrating dendritic cells in cancer pathogenesis, J. Immunol., 194 (2015), 2985-2991. Google Scholar

[13]

Y. KimS. LawlerM. O. NowickiE. A. Chiocca and A. Friedman, A mathematical model for pattern formation of glioma cells outside the tumor spheroid core, J. Theor. Biol., 260 (2009), 359-371. doi: 10.1016/j.jtbi.2009.06.025. Google Scholar

[14]

Y. KimJ. WallaceF. LiM. Ostrowski and A. Friedman, Transformed epithelial cells and fibroblasts/myofibroblasts interaction in breast tumor: a mathematical model and experiments, J. Theor. Biol., 61 (2010), 401-421. doi: 10.1007/s00285-009-0307-2. Google Scholar

[15]

X. Lai and A. Friedman, Combination therapy of cancer with BRAF inhibitor and immune checkpoint inhibitor: A mathematical model, BMC System Biology, 11 (2017), 1-18. Google Scholar

[16]

X. LaiA. StiffM. DugganR. WesolowskiW. E. Carson III and A. Friedman, Modeling combination therapy for breast cancer with BET and immune checkpoint inhibitors, Proc. Natl. Acad. Sci. USA, 115 (2018), 5534-5539. Google Scholar

[17]

K. L. Liao, X. F. Bai and A. Friedman, Mathematical modeling of interleukin-27 induction of anti-tumor T cells response, PLoS ONE, 9 (2014), e91844.Google Scholar

[18]

Y. MaG. V. Shurin1Z. Peiyuan and M. R. Shurin, Dendritic Cells in the Cancer Microenvironment., J. Cancer, 4 (2013), 36-44. Google Scholar

[19]

M. L. Maitland, C. Hudoba, K. L. Snider and M. J. Ratain, Analysis of the yield of phase Ⅱ combination therapy trials in medical oncology, Clinical Cancer Research, (2010), 1078-0432.Google Scholar

[20]

J. MarkowitzR. WesolowskiT. PapenfussT. R. Brooks and W. E. Carson, Myeloid-derived suppressor cells in breast cancer., Breast Cancer Res. Treat., 140 (2013), 13-21. Google Scholar

[21]

R. L. Mautea, S. R. Gordona, A. T. Mayere, M. N. McCrackena, A. Natarajane and N. G. Ring, et al., Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging., Proc. Natl. Acad. Sci. USA, 112 (2015), E6506-E6514.Google Scholar

[22]

P. Muller, K. Martin, S. Theurich, M. V. Bergwelt-Baildon and A. Zippelius, Cancer chemotherapy agents target intratumoral dendritic cells to potentiate antitumor immunity, Oncoimmunology, 3 (2014). doi: 10.4161/21624011.2014.954460. Google Scholar

[23]

M. R. Muppidi and S. George, Immune Checkpoint Inhibitors in Renal Cell Carcinoma, Journal of Targeted Therapies in Cancer 2015, 4 (2015), 47-52. Google Scholar

[24]

E. ObeidR. NandaY.-X. Fu and O. I. Olopade, The role of tumor-associated macrophages in breast cancer progression (review), Int. J. Oncol., 43 (2013), 5-12. Google Scholar

[25]

J. Palucka and J. Banchereau, Cancer immunotherapy via dendritic cells, Nat. Rev. Cancer, 12 (2012), 265-277. Google Scholar

[26]

C. Y. PerrotD. Javelaud and A. Mauviel, Insights into the Transforming Growth Factor-beta Signaling Pathway in Cutaneous Melanoma, Ann. Dermatol., 25 (2013), 135-144. Google Scholar

[27]

R. Saenz, D. Futalan, L. Leutenez, F. Eekhout, J. F. Fecteau and S. Sundelius, et al., TLR4- dependent activation of dendritic cells by an HMGB1-derived peptide adjuvant. J. Transl. Med., 12 (2014), 1-11.Google Scholar

[28]

M. R. SharmaW. M. Stadler and M. J. Ratain, Randomized phase Ⅱ trials: a long-term investment with promising returns, Journal of the National Cancer Institute, 103 (2011), 1093-1100. Google Scholar

[29]

L. Shi, S. Chen, L. Yang and Y. Li, The role of PD-1 and PD-L1 in T-cell immune suppression in patients with hematological malignancies, J. Hematol. Oncol., 6 (2013).Google Scholar

[30]

Y. B. Shui, X. Wang, J. S. Hu, S. P. Wang, C. M. Garcia and et al., Vascular endothelial growth factor expression and signaling in the lens. Invest. Ophthalmol. Vis. Sci., 44 (2003), 3911-3919.Google Scholar

[31]

G. P. SimsD. C. RoweS. T. RietdijkR. Herbst and A. J. Coyle, HMGB1 and RAGE in inflammation and cancer, Annu. Rev. Immunol., 28 (2010), 367-388. Google Scholar

[32]

S. SinghN. MehtaJ. LilanM. B. BudhthokiF. Chao and L. Yong, Initiative action of tumor-associated macrophage during tumor metastasis, Biochim Open, 4 (2017), 8-18. doi: 10.1016/j.biopen.2016.11.002. Google Scholar

[33]

V. UmanskyC. BlattnerC. Gebhardt and J. Utikal, The role of myeloid-derived suppressor cells (MDSC) in cancer progression, Vaccines, 4 (2016), 1-16. doi: 10.3390/vaccines4040036. Google Scholar

[34]

E. Vacchelli, Y. Ma, E. E. Baracco, A. Sistigu, D. P. Enot and F. Pietrocola, et al., Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1, Science, 350 (2015), 972-978.Google Scholar

[35]

T. L. Whiteside, The role of regulatory T cells in cancer immunology, Immunotargets Ther., 4 (2015), 159-171. Google Scholar

[36]

M. E. Young, Estimation of diffusion coefficients of proteins, Biotechnology and Bioengineering, XXII (1980), 947-955. Google Scholar

[37]

L. Zandarashvili, D. Sahu, K. Lee, Y. S. Lee, P. Singh and K. Rajarathnam, et al., Real-time kinetics of high-mobility group box 1 (HMGB1) oxidation in extracellular fluids studied by in situ protein NMR spectroscopy, J. Biol. Chem., 288 (2013), 11621-11627.Google Scholar

[38]

J. Zhang, M. B. Patel, R. Griffiths, A. Mao, Y. soo Song and N. S. Karlovich, et al., Tumor necrosis factor-alpha produced in the kidney contributes to angiotensin Ⅱ-dependent hypertension, Hypertension, 64 (2014), 1275-1281.Google Scholar

Figure 1.  Interaction of immune cells with cancer cells. Sharp arrows indicate proliferation/activation, blocked arrow indicates killing/blocking, inverted sharp arrow indicates recruitment/chemoattraction. $ C $: cancer cells, $ T $: effector T cells
Figure 2.  Average densities/concentrations, in $ {\rm g}/{\rm cm}^3 $, of all the variables of the model in control case (no drugs). All parameter values are the same as in Tables 2 and 3, for a mouse model
Figure 3.  Growth of tumor volume under treatment with $ \gamma_X $ or $ \gamma_A $, or combination ($ \gamma_X,\gamma_A $). The chemotherapy or/and anti-PD-1 treatments. (a) $ \gamma_X = 5\times 10^{-13} $ $ {\rm g}/{\rm cm}^3\cdot {\rm day} $, $ \gamma_A = 2\times 10^{-11} $ $ {\rm g}/{\rm cm}^3\cdot {\rm day} $; (b) $ \gamma_X = 3\times 10^{-13} $ $ {\rm g}/{\rm cm}^3\cdot {\rm day} $, $ \gamma_A = 5\times 10^{-11} $ $ {\rm g}/{\rm cm}^3\cdot {\rm day} $. All other parameter values are the same as in Tables 2 and 3, for a mouse model
Figure 4.  Efficacy of combination therapy at day 30 for different pair of $ (\gamma_X, \gamma_A) $. Here (a) $ \gamma_X = 0 - 2\times 10^{-12} $ $ {\rm g}/{\rm cm}^3 $ and $ \gamma_A = 0 - 1.8\times 10^{-10} $ $ {\rm g}/{\rm cm}^3 $. (b) $ \gamma_X = 0.9\times 10^{-12} - 2\times 10^{-12} $ $ {\rm g}/{\rm cm}^3 $ and $ \gamma_A = 1\times 10^{-10} - 1.8\times 10^{-10} $ $ {\rm g}/{\rm cm}^3 $. All other parameter values are the same as in Tables 2 and 3
Figure 5.  Average T cell density at day 30 for different pair of $ (\gamma_X, \gamma_A) $. Here $ \gamma_X = 0 - 2\times 10^{-12} $ $ {\rm g}/{\rm cm}^3 $ and $ \gamma_A = 0 - 1.8\times 10^{-10} $ $ {\rm g}/{\rm cm}^3 $. All other parameter values are the same as in Tables 2 and 3
Figure 6.  Average concentration of TNF-$ \alpha $ at day 30 for different pair of $ (\gamma_X, \gamma_A) $. Here $ \gamma_X = 0 - 2\times 10^{-12} $ $ {\rm g}/{\rm cm}^3 $ and $ \gamma_A = 0 - 1.8\times 10^{-10} $ $ {\rm g}/{\rm cm}^3 $. All other parameter values are the same as in Tables 2 and 3
Table 1.  List of variables (in units of g/$ {\rm cm}^3 $)
Notation Description Notation Description
$D$ density of DCs $I_{12}$ IL-12 concentration
$T$ density of effector T cells $M_P$ MCP-1 (CCL2) concentration
$M_1$ density of proinflammatory macrophages M1 $I_{10}$ IL-10 concentration
$M_2$ density of anti-proinflammatory macrophages M2 $T_\beta$ TGF- $\beta$ : concentration
$C$ density of cancer cells $P$ PD-1 concentration
$A$ concentration of anti-PD-1 $L$ PD-L1 concentration
$X$ concentration of a chemotherapy agent $Q$ PD-1-PD-L1 concentration
Notation Description Notation Description
$D$ density of DCs $I_{12}$ IL-12 concentration
$T$ density of effector T cells $M_P$ MCP-1 (CCL2) concentration
$M_1$ density of proinflammatory macrophages M1 $I_{10}$ IL-10 concentration
$M_2$ density of anti-proinflammatory macrophages M2 $T_\beta$ TGF- $\beta$ : concentration
$C$ density of cancer cells $P$ PD-1 concentration
$A$ concentration of anti-PD-1 $L$ PD-L1 concentration
$X$ concentration of a chemotherapy agent $Q$ PD-1-PD-L1 concentration
Table 2.  Summary of parameter values
NotationDescriptionValue usedReferences
$\delta_D$ diffusion coefficient of DCs $8.64 \times 10^{-7}$ ${\rm cm}^2$ ${\rm day}^{-1}$ [8]
$\delta_T$ diffusion coefficient of T cells $8.64\times 10^{-7}$ ${\rm cm}^2$ ${\rm day}^{-1}$ [8]
$\delta_M$ diffusion coefficient of macrophages $8.64\times 10^{-7}$ ${\rm cm}^2$ ${\rm day}^{-1}$ [8]
$\delta_C$ diffusion coefficient of tumor cells $8.64\times 10^{-7}$ ${\rm cm}^2$ ${\rm day}^{-1}$ [8]
$\delta_{I_{12}}$ diffusion coefficient of IL-12 $6.05\times 10^{-2}$ ${\rm cm}^2$ ${\rm day}^{-1}$ [16]
$\delta_{T_{\beta}}$ diffusion coefficient of TGF-$\beta$ $8.52\times 10^{-2}$ ${\rm cm}^2$ ${\rm day}^{-1}$ [16]
$\delta_{I_{10}}$ diffusion coefficient of IL-10 $9.11\times 10^{-2}$ ${\rm cm}^2$ ${\rm day}^{-1}$ [16]
$\delta_{T_\alpha}$ diffusion coefficient of TNF-$\alpha$ $8.46\times 10^{-2}$ ${\rm cm}^2$ ${\rm day}^{-1}$ [16]
$\delta_{M_P}$ diffusion coefficient of MCP-1 $1.12\times 10^{-1}$ ${\rm cm}^2$ ${\rm day}^{-1}$ [16]
$\delta_A$ diffusion coefficient of anti-PD-1 $4.73\times 10^{-2}$ ${\rm cm}^2$ ${\rm day}^{-1}$ estimated
$\delta_X$ diffusion coefficient of $X$ $0.27$ ${\rm cm}^2$ ${\rm day}^{-1}$ estimated
$\sigma_0$ flux rate of $T$ cells at the boundary1 ${\rm cm}^{-1}$ [8]
$\chi_M$ chemoattraction coefficient of MCP-1 $10$ ${\rm cm}^5/{\rm g}\cdot {\rm day}$ [13,14]
$\lambda_{DC}$ activation rate of DCs by tumor cells $ 10$ ${\rm g}/{\rm cm}^3\cdot{\rm day}$ [16]
$\lambda_{TI_{12}}$ activation rate of T cells by IL-12 $16.2$ ${\rm day}^{-1}$ estimated
$\lambda_{M_1}$ activation rate of M1 macrophages $1.35$ ${\rm day}^{-1}$ [16]
$\lambda_{M_2}$ activation rate of M2 macrophages $1.01$ ${\rm day}^{-1}$ [16]
$\beta_{M_1}$ phenotype change rate of M1 to M2 macrophages $0.3$ ${\rm day}^{-1}$ estimated
$\beta_{M_2}$ phenotype change rate of M2 to M1 macrophages $ 4.68\times 10^{-3}$ ${\rm day}^{-1}$ estimated
$\lambda_{C}$ growth rate of cancer cells $1.92$ ${\rm day}^{-1}$ estimated
$\lambda_{I_{12}D}$ production rate of IL-12 by DCs $1.38\times 10^{-6}$ ${\rm day}^{-1}$ [16]
$\lambda_{I_{12}M_1}$ production rate of IL-12 by M1 macrophages $5.52\times 10^{-6}$ ${\rm day}^{-1}$ [16]
$\lambda_{T_\beta C}$ production rate of TGF-$\beta$ by cancer cells $2.79\times 10^{-10} $ ${\rm day}^{-1}$ estimated
$\lambda_{T_\beta M_2}$ production rate of TGF-$\beta$ by M2 macrophages $6.97 \times 10^{-9} $ ${\rm day}^{-1}$ estimated
$\lambda_{I_{10} C}$ production rate of IL-10 by cancer cells $2.07\times 10^{-8} $ ${\rm day}^{-1}$ [16]
$\lambda_{I_{10} M_2}$ production rate of IL-10 by M2 macrophages $1.65\times 10^{-9}$ ${\rm day}^{-1}$ [16]
$\lambda_{T_\alpha M_1}$ production rate of TNF $\alpha$ by M1 macrophages $1.36\times 10^{-5}$ ${\rm day}^{-1}$ [16]
$\lambda_{T_\alpha T}$ production rate of TNF $\alpha$ by Th1 cells $9.06\times 10^{-8}$ ${\rm day}^{-1}$ estimated
$\lambda_{M_PM_2}$ production rate of MCP-1 by M2 macrophages $1.2\times 10^{-8} $ ${\rm day}^{-1}$ [16]
$\lambda_{M_PC}$ production rate of MCP-1 by cancer cells $8.24\times 10^{-7} $ ${\rm day}^{-1}$ [16]
$d_{D}$ death rate of DCs0.1 ${\rm day}^{-1}$ [8]
$d_{T}$ death rate of T cells $0.18 $ ${\rm day}^{-1}$ [8]
$d_{M_1}$ death rate of M1 macrophage $0.015$ ${\rm day}^{-1}$ [9]
$d_{M_2}$ death rate of M2 macrophage $0.015$ ${\rm day}^{-1}$ [9]
$d_{C}$ death rate of tumor cells $0.17$ ${\rm day}^{-1}$ [8]
$d_{I_{12}}$ degradation rate of IL-12 $1.38$ ${\rm day}^{-1}$ [8]
$d_{T_\beta}$ degradation rate of TGF-$\beta$ $499.066$ ${\rm day}^{-1}$ [16]
$d_{I_{10}}$ degradation rate of IL-10 $8.3178$ ${\rm day}^{-1}$ [16]
$d_{T_\alpha}$ degradation rate of TGF-$\alpha$ $55.01$ ${\rm day}^{-1}$ [16]
$d_{M_P}$ degradation rate of MCP-1 $55.01$ ${\rm day}^{-1}$ [10]
$d_{A}$ degradation rate of anti-PD-1 $0.047$ ${\rm day}^{-1}$ [16]
$d_X$ degradation rate of docetexel $1.11$ ${\rm day}^{-1}$ estimated
NotationDescriptionValue usedReferences
$\delta_D$ diffusion coefficient of DCs $8.64 \times 10^{-7}$ ${\rm cm}^2$ ${\rm day}^{-1}$ [8]
$\delta_T$ diffusion coefficient of T cells $8.64\times 10^{-7}$ ${\rm cm}^2$ ${\rm day}^{-1}$ [8]
$\delta_M$ diffusion coefficient of macrophages $8.64\times 10^{-7}$ ${\rm cm}^2$ ${\rm day}^{-1}$ [8]
$\delta_C$ diffusion coefficient of tumor cells $8.64\times 10^{-7}$ ${\rm cm}^2$ ${\rm day}^{-1}$ [8]
$\delta_{I_{12}}$ diffusion coefficient of IL-12 $6.05\times 10^{-2}$ ${\rm cm}^2$ ${\rm day}^{-1}$ [16]
$\delta_{T_{\beta}}$ diffusion coefficient of TGF-$\beta$ $8.52\times 10^{-2}$ ${\rm cm}^2$ ${\rm day}^{-1}$ [16]
$\delta_{I_{10}}$ diffusion coefficient of IL-10 $9.11\times 10^{-2}$ ${\rm cm}^2$ ${\rm day}^{-1}$ [16]
$\delta_{T_\alpha}$ diffusion coefficient of TNF-$\alpha$ $8.46\times 10^{-2}$ ${\rm cm}^2$ ${\rm day}^{-1}$ [16]
$\delta_{M_P}$ diffusion coefficient of MCP-1 $1.12\times 10^{-1}$ ${\rm cm}^2$ ${\rm day}^{-1}$ [16]
$\delta_A$ diffusion coefficient of anti-PD-1 $4.73\times 10^{-2}$ ${\rm cm}^2$ ${\rm day}^{-1}$ estimated
$\delta_X$ diffusion coefficient of $X$ $0.27$ ${\rm cm}^2$ ${\rm day}^{-1}$ estimated
$\sigma_0$ flux rate of $T$ cells at the boundary1 ${\rm cm}^{-1}$ [8]
$\chi_M$ chemoattraction coefficient of MCP-1 $10$ ${\rm cm}^5/{\rm g}\cdot {\rm day}$ [13,14]
$\lambda_{DC}$ activation rate of DCs by tumor cells $ 10$ ${\rm g}/{\rm cm}^3\cdot{\rm day}$ [16]
$\lambda_{TI_{12}}$ activation rate of T cells by IL-12 $16.2$ ${\rm day}^{-1}$ estimated
$\lambda_{M_1}$ activation rate of M1 macrophages $1.35$ ${\rm day}^{-1}$ [16]
$\lambda_{M_2}$ activation rate of M2 macrophages $1.01$ ${\rm day}^{-1}$ [16]
$\beta_{M_1}$ phenotype change rate of M1 to M2 macrophages $0.3$ ${\rm day}^{-1}$ estimated
$\beta_{M_2}$ phenotype change rate of M2 to M1 macrophages $ 4.68\times 10^{-3}$ ${\rm day}^{-1}$ estimated
$\lambda_{C}$ growth rate of cancer cells $1.92$ ${\rm day}^{-1}$ estimated
$\lambda_{I_{12}D}$ production rate of IL-12 by DCs $1.38\times 10^{-6}$ ${\rm day}^{-1}$ [16]
$\lambda_{I_{12}M_1}$ production rate of IL-12 by M1 macrophages $5.52\times 10^{-6}$ ${\rm day}^{-1}$ [16]
$\lambda_{T_\beta C}$ production rate of TGF-$\beta$ by cancer cells $2.79\times 10^{-10} $ ${\rm day}^{-1}$ estimated
$\lambda_{T_\beta M_2}$ production rate of TGF-$\beta$ by M2 macrophages $6.97 \times 10^{-9} $ ${\rm day}^{-1}$ estimated
$\lambda_{I_{10} C}$ production rate of IL-10 by cancer cells $2.07\times 10^{-8} $ ${\rm day}^{-1}$ [16]
$\lambda_{I_{10} M_2}$ production rate of IL-10 by M2 macrophages $1.65\times 10^{-9}$ ${\rm day}^{-1}$ [16]
$\lambda_{T_\alpha M_1}$ production rate of TNF $\alpha$ by M1 macrophages $1.36\times 10^{-5}$ ${\rm day}^{-1}$ [16]
$\lambda_{T_\alpha T}$ production rate of TNF $\alpha$ by Th1 cells $9.06\times 10^{-8}$ ${\rm day}^{-1}$ estimated
$\lambda_{M_PM_2}$ production rate of MCP-1 by M2 macrophages $1.2\times 10^{-8} $ ${\rm day}^{-1}$ [16]
$\lambda_{M_PC}$ production rate of MCP-1 by cancer cells $8.24\times 10^{-7} $ ${\rm day}^{-1}$ [16]
$d_{D}$ death rate of DCs0.1 ${\rm day}^{-1}$ [8]
$d_{T}$ death rate of T cells $0.18 $ ${\rm day}^{-1}$ [8]
$d_{M_1}$ death rate of M1 macrophage $0.015$ ${\rm day}^{-1}$ [9]
$d_{M_2}$ death rate of M2 macrophage $0.015$ ${\rm day}^{-1}$ [9]
$d_{C}$ death rate of tumor cells $0.17$ ${\rm day}^{-1}$ [8]
$d_{I_{12}}$ degradation rate of IL-12 $1.38$ ${\rm day}^{-1}$ [8]
$d_{T_\beta}$ degradation rate of TGF-$\beta$ $499.066$ ${\rm day}^{-1}$ [16]
$d_{I_{10}}$ degradation rate of IL-10 $8.3178$ ${\rm day}^{-1}$ [16]
$d_{T_\alpha}$ degradation rate of TGF-$\alpha$ $55.01$ ${\rm day}^{-1}$ [16]
$d_{M_P}$ degradation rate of MCP-1 $55.01$ ${\rm day}^{-1}$ [10]
$d_{A}$ degradation rate of anti-PD-1 $0.047$ ${\rm day}^{-1}$ [16]
$d_X$ degradation rate of docetexel $1.11$ ${\rm day}^{-1}$ estimated
Table 3.  Summary of parameter values
NotationDescriptionValue usedReferences
$K_D$half-saturation of dendritic cells $4\times 10^{-4}$ g/${\rm cm}^3$[16]
$K_{T}$half-saturation of T cells $3\times 10^{-3}$ g/${\rm cm}^3$[16]
$K_{M_1}$half-saturation of M1 macrophages $10^{-4}$ ${\rm g}/{\rm cm}^3$[16]
$K_{M_2}$half-saturation of M2 macrophages $3.2\times 10^{-3}$ ${\rm g}/{\rm cm}^3$[16]
$K_{C}$half-saturation of tumor cells $0.4$ g/${\rm cm}^3$[8]
$K_{I_{12}}$half-saturation of IL-12 $8\times 10^{-10}$ g/${\rm cm}^3$[16]
$K_{T_\beta}$half-saturation of TGF-$\beta$ $2.68\times 10^{-13}$ ${\rm g}/{\rm cm}^3$[16]
$K_{I_{10}}$half-saturation of IL-10 $8.75\times 10^{-11}$ g/${\rm cm}^3$[16]
$K_{T_\alpha}$half-saturation of TNF-$\alpha$ $3\times 10^{-11}$ g/${\rm cm}^3$[11]
$K_{M_P}$half-saturation of MCP-1 $2\times 10^{-7}$ ${\rm g}/{\rm cm}^3$[10]
$K_{X}$half-saturation of $X$ $8.02\times 10^{-11}$ ${\rm g}/{\rm cm}^3$estimated
$K_{TI_{10}}$inhibition of function of T cells by IL-10 $4.375\times 10^{-11}$ g/${\rm cm}^3$[16]
$K_{TQ}$inhibition of function of T cells by PD-1-PD-L1 $4.86\times 10^{-20}$ ${\rm g}^2/{\rm cm}^6$estimated
$K_{CX}$inhibition of proliferation of cancer cells by docetexel $8.02\times 10^{-10}$ ${\rm g}/{\rm cm}^3$estimated
$D_0$density of inactive DCs $2\times 10^{-5}$ g/${\rm cm}^3$[8]
$T_{0}$density of naive T cells in tumor $6\times 10^{-4}$ g/${\rm cm}^3$estimated
$M_{10}$density of monocytes$1.2\times 10^{-4}$ $ {\rm g}/{\rm cm}^3$[16]
$M_{20}$density of monocytes$3.84\times 10^{-3}$ $ {\rm g}/{\rm cm}^3$[16]
$C_M$carrying capacity of cancer cells $0.8$ g/${\rm cm}^3$[8]
$\hat T$density of T cells from lymph node $6\times 10^{-3}$ g/${\rm cm}^3$[16]
$\eta$killing rate of tumor cells by T cells $210$ $ {\rm cm}^3/{\rm g}\cdot {\rm day}$[16]
$\mu_{XC}$absorbtion rate of $X$ by cancer cellsestimated
$\rho_P$expression of PD-1 in T cells $2.49\times 10^{-7} $[15]
$\rho_L$expression of PD-L1 in T cells $3.25\times 10^{-7} $[15]
NotationDescriptionValue usedReferences
$K_D$half-saturation of dendritic cells $4\times 10^{-4}$ g/${\rm cm}^3$[16]
$K_{T}$half-saturation of T cells $3\times 10^{-3}$ g/${\rm cm}^3$[16]
$K_{M_1}$half-saturation of M1 macrophages $10^{-4}$ ${\rm g}/{\rm cm}^3$[16]
$K_{M_2}$half-saturation of M2 macrophages $3.2\times 10^{-3}$ ${\rm g}/{\rm cm}^3$[16]
$K_{C}$half-saturation of tumor cells $0.4$ g/${\rm cm}^3$[8]
$K_{I_{12}}$half-saturation of IL-12 $8\times 10^{-10}$ g/${\rm cm}^3$[16]
$K_{T_\beta}$half-saturation of TGF-$\beta$ $2.68\times 10^{-13}$ ${\rm g}/{\rm cm}^3$[16]
$K_{I_{10}}$half-saturation of IL-10 $8.75\times 10^{-11}$ g/${\rm cm}^3$[16]
$K_{T_\alpha}$half-saturation of TNF-$\alpha$ $3\times 10^{-11}$ g/${\rm cm}^3$[11]
$K_{M_P}$half-saturation of MCP-1 $2\times 10^{-7}$ ${\rm g}/{\rm cm}^3$[10]
$K_{X}$half-saturation of $X$ $8.02\times 10^{-11}$ ${\rm g}/{\rm cm}^3$estimated
$K_{TI_{10}}$inhibition of function of T cells by IL-10 $4.375\times 10^{-11}$ g/${\rm cm}^3$[16]
$K_{TQ}$inhibition of function of T cells by PD-1-PD-L1 $4.86\times 10^{-20}$ ${\rm g}^2/{\rm cm}^6$estimated
$K_{CX}$inhibition of proliferation of cancer cells by docetexel $8.02\times 10^{-10}$ ${\rm g}/{\rm cm}^3$estimated
$D_0$density of inactive DCs $2\times 10^{-5}$ g/${\rm cm}^3$[8]
$T_{0}$density of naive T cells in tumor $6\times 10^{-4}$ g/${\rm cm}^3$estimated
$M_{10}$density of monocytes$1.2\times 10^{-4}$ $ {\rm g}/{\rm cm}^3$[16]
$M_{20}$density of monocytes$3.84\times 10^{-3}$ $ {\rm g}/{\rm cm}^3$[16]
$C_M$carrying capacity of cancer cells $0.8$ g/${\rm cm}^3$[8]
$\hat T$density of T cells from lymph node $6\times 10^{-3}$ g/${\rm cm}^3$[16]
$\eta$killing rate of tumor cells by T cells $210$ $ {\rm cm}^3/{\rm g}\cdot {\rm day}$[16]
$\mu_{XC}$absorbtion rate of $X$ by cancer cellsestimated
$\rho_P$expression of PD-1 in T cells $2.49\times 10^{-7} $[15]
$\rho_L$expression of PD-L1 in T cells $3.25\times 10^{-7} $[15]
[1]

Urszula Ledzewicz, Helmut Maurer, Heinz Schättler. Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy. Mathematical Biosciences & Engineering, 2011, 8 (2) : 307-323. doi: 10.3934/mbe.2011.8.307

[2]

Shengqiang Liu, Lin Wang. Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy. Mathematical Biosciences & Engineering, 2010, 7 (3) : 675-685. doi: 10.3934/mbe.2010.7.675

[3]

Urszula Ledzewicz, Heinz Schättler. The Influence of PK/PD on the Structure of Optimal Controls in Cancer Chemotherapy Models. Mathematical Biosciences & Engineering, 2005, 2 (3) : 561-578. doi: 10.3934/mbe.2005.2.561

[4]

Manuel Delgado, Cristian Morales-Rodrigo, Antonio Suárez. Anti-angiogenic therapy based on the binding to receptors. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3871-3894. doi: 10.3934/dcds.2012.32.3871

[5]

Tinevimbo Shiri, Winston Garira, Senelani D. Musekwa. A two-strain HIV-1 mathematical model to assess the effects of chemotherapy on disease parameters. Mathematical Biosciences & Engineering, 2005, 2 (4) : 811-832. doi: 10.3934/mbe.2005.2.811

[6]

Avner Friedman, Xiulan Lai. Free boundary problems associated with cancer treatment by combination therapy. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 1-18. doi: 10.3934/dcds.2019233

[7]

Luis A. Fernández, Cecilia Pola. Catalog of the optimal controls in cancer chemotherapy for the Gompertz model depending on PK/PD and the integral constraint. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1563-1588. doi: 10.3934/dcdsb.2014.19.1563

[8]

Cameron J. Browne, Sergei S. Pilyugin. Minimizing $\mathcal R_0$ for in-host virus model with periodic combination antiviral therapy. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3315-3330. doi: 10.3934/dcdsb.2016099

[9]

Reihaneh Mostolizadeh, Zahra Afsharnezhad, Anna Marciniak-Czochra. Mathematical model of Chimeric Anti-gene Receptor (CAR) T cell therapy with presence of cytokine. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 63-80. doi: 10.3934/naco.2018004

[10]

Rachid Ouifki, Gareth Witten. A model of HIV-1 infection with HAART therapy and intracellular delays. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 229-240. doi: 10.3934/dcdsb.2007.8.229

[11]

Feng Xie. Nonlinear stability of combination of viscous contact wave with rarefaction waves for a 1D radiation hydrodynamics model. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 1075-1100. doi: 10.3934/dcdsb.2012.17.1075

[12]

Xian Zhang, Vinesh Nishawala, Martin Ostoja-Starzewski. Anti-plane shear Lamb's problem on random mass density fields with fractal and Hurst effects. Evolution Equations & Control Theory, 2019, 8 (1) : 231-246. doi: 10.3934/eect.2019013

[13]

Gesham Magombedze, Winston Garira, Eddie Mwenje. Modelling the immunopathogenesis of HIV-1 infection and the effect of multidrug therapy: The role of fusion inhibitors in HAART. Mathematical Biosciences & Engineering, 2008, 5 (3) : 485-504. doi: 10.3934/mbe.2008.5.485

[14]

Valeria Artale, Cristina L. R. Milazzo, Calogero Orlando, Angela Ricciardello. Comparison of GA and PSO approaches for the direct and LQR tuning of a multirotor PD controller. Journal of Industrial & Management Optimization, 2017, 13 (4) : 2067-2091. doi: 10.3934/jimo.2017032

[15]

Cristian Morales-Rodrigo. A therapy inactivating the tumor angiogenic factors. Mathematical Biosciences & Engineering, 2013, 10 (1) : 185-198. doi: 10.3934/mbe.2013.10.185

[16]

Claude Carlet, Sylvain Guilley. Complementary dual codes for counter-measures to side-channel attacks. Advances in Mathematics of Communications, 2016, 10 (1) : 131-150. doi: 10.3934/amc.2016.10.131

[17]

Tatsien Li, Bopeng Rao, Zhiqiang Wang. A note on the one-side exact boundary controllability for quasilinear hyperbolic systems. Communications on Pure & Applied Analysis, 2009, 8 (1) : 405-418. doi: 10.3934/cpaa.2009.8.405

[18]

Ismail Abdulrashid, Abdallah A. M. Alsammani, Xiaoying Han. Stability analysis of a chemotherapy model with delays. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 989-1005. doi: 10.3934/dcdsb.2019002

[19]

Xuan Wang, Shaoshuai Mou, Shreyas Sundaram. A resilient convex combination for consensus-based distributed algorithms. Numerical Algebra, Control & Optimization, 2019, 9 (3) : 269-281. doi: 10.3934/naco.2019018

[20]

Baba Issa Camara, Houda Mokrani, Evans K. Afenya. Mathematical modeling of glioma therapy using oncolytic viruses. Mathematical Biosciences & Engineering, 2013, 10 (3) : 565-578. doi: 10.3934/mbe.2013.10.565

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (32)
  • HTML views (37)
  • Cited by (0)

Other articles
by authors

[Back to Top]