November  2020, 25(11): 4427-4447. doi: 10.3934/dcdsb.2020106

Kink solitary solutions to a hepatitis C evolution model

1. 

Research Group for Mathematical, and Numerical Analysis of Dynamical Systems, Kaunas University of Technology, Studentu 50-147, Kaunas LT-51368, Lithuania

2. 

Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid, Spain

3. 

Department of Applied Informatics, Kaunas University of Technology, Studentu 50-407, Kaunas LT-51368, Lithuania

4. 

Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA

5. 

Department of Software Engineering, Kaunas University of Technology, Studentu 50-415, Kaunas LT-51368, Lithuania

* Corresponding author: Tadas Telksnys (tadas.telksnys@ktu.lt)

Received  July 2017 Published  March 2020

The standard nonlinear hepatitis C evolution model described in (Reluga et al. 2009) is considered in this paper. The generalized differential operator technique is used to construct analytical kink solitary solutions to the governing equations coupled with multiplicative and diffusive terms. Conditions for the existence of kink solitary solutions are derived. It appears that kink solitary solutions are either in a linear or in a hyperbolic relationship. Thus, a large perturbation in the population of hepatitis infected cells does not necessarily lead to a large change in uninfected cells. Computational experiments are used to illustrate the evolution of transient solitary solutions in the hepatitis C model.

Citation: Tadas Telksnys, Zenonas Navickas, Miguel A. F. Sanjuán, Romas Marcinkevicius, Minvydas Ragulskis. Kink solitary solutions to a hepatitis C evolution model. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4427-4447. doi: 10.3934/dcdsb.2020106
References:
[1]

N. N. Akhmediev and A. Ankiewicz, Dissipative Solitons: From Optics to Biology and Medicine, Lecture Notes in Physics, 751, Springer-Verlag, Berlin, 2008. doi: 10.1007/978-3-540-78217-9.  Google Scholar

[2]

E. G. Charalampidis, P. G. Kevrekidis, D. J. Frantzeskakis and B. A. Malomed, Dark-bright solitons in coupled nonlinear Schrödinger equations with unequal dispersion coefficients, Phys. Rev. E, 91 (2015). doi: 10.1103/PhysRevE.91.012924.  Google Scholar

[3] F. CourchampL. Berec and J. Gascoigne, Allee Effects in Ecology and Conservation, Oxford University Press, Oxford, 2008.   Google Scholar
[4] T. Dauxois and M. Peyrard, Physics of Solitons, Cambridge University Press, Cambridge, 2010.   Google Scholar
[5]

W. Feng, J. Q. Li and Y. Kishimoto, Theory on bright and dark soliton formation in strongly magnetized plasmas, Physics Plasmas, 23 (2016). doi: 10.1063/1.4962846.  Google Scholar

[6]

F. Genoud, Extrema of the dynamic pressure in a solitary wave, Nonlinear Anal., 155 (2017), 65-71.  doi: 10.1016/j.na.2017.01.009.  Google Scholar

[7]

A. M. GrundlandM. Kovalyov and M. Sussman, Interaction of kink-type solutions of the harmonic map equations, J. Math. Phys., 35 (1994), 6774-6783.  doi: 10.1063/1.530642.  Google Scholar

[8]

Y.-H. Hu and S.-Y. Lou, Analytical descriptions of dark and gray solitons in nonlocal nonlinear media, Commun. Theor. Phys. (Beijing), 64 (2015), 665-670.  doi: 10.1088/0253-6102/64/6/665.  Google Scholar

[9]

A. KelkarE. Yomba and R. Djeloulli, Solitary wave solutions and modulational instability in a system of coupled complex Newell-Segel-Whitehead equations, Commun. Nonlinear Sci. Numer. Simul., 41 (2016), 118-139.  doi: 10.1016/j.cnsns.2016.04.034.  Google Scholar

[10]

J. D. Lambert, Numerical Methods for Ordinary Differential Systems. The Initial Value Problem, John Wiley & Sons, Ltd., Chichester, 1991.  Google Scholar

[11]

A. G. LópezJ. M. Seoane and M. A. F. Sanjuán, A validated mathematical model of tumor growth including tumor-host interaction, cell-mediated immune response and chemotherapy, Bull. Math. Biol., 76 (2014), 2884-2906.  doi: 10.1007/s11538-014-0037-5.  Google Scholar

[12]

H. McCallumN. Barlow and J. Hone, How should pathogen transmission be modelled?, Trends Ecol. Evol., 16 (2001), 295-300.  doi: 10.1016/S0169-5347(01)02144-9.  Google Scholar

[13]

Z. Navickas and L. Bikulciene, Expressions of solutions of ordinary differential equations by standard functions, Math. Model. Anal., 11 (2006), 399-412.  doi: 10.3846/13926292.2006.9637327.  Google Scholar

[14]

Z. NavickasR. MarcinkeviciusT. Telksnys and M. Ragulskis, Existence of second order solitary solutions to Riccati differential equations coupled with a multiplicative term, IMA. J. Appl. Math., 81 (2016), 1163-1190.  doi: 10.1093/imamat/hxw050.  Google Scholar

[15]

Z. NavickasM. Ragulskis and T. Telksnys, Existence of solitary solutions in a class of nonlinear differential equations with polynomial nonlinearity, Appl. Math. Comput., 283 (2016), 333-338.  doi: 10.1016/j.amc.2016.02.049.  Google Scholar

[16]

Z. NavickasR. VilkasT. Telksnys and M. Ragulskis, Direct and inverse relationships between Riccati systems coupled with multiplicative terms, J. Biol. Dyn., 10 (2016), 297-313.  doi: 10.1080/17513758.2016.1181801.  Google Scholar

[17]

A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, Chapman & Hall/CRC, Boca Raton, FL, 2003.  Google Scholar

[18]

Z. Qiao and J. Li, Negative-order KdV equation with both solitons and kink wave solutions, Europhys. Lett., 94 (2011), 50003. doi: 10.1209/0295-5075/94/50003.  Google Scholar

[19] W. T. Reid, Riccati Differential Equations, Mathematics in Science and Engineering, 86, Academic Press, New York-London, 1972.   Google Scholar
[20]

T. C. RelugaH. Dahari and A. S. Perelson, Analysis of hepatitis C virus infection models with hepatocyte homeostasis, SIAM J. Appl. Math., 69 (2009), 999-1023.  doi: 10.1137/080714579.  Google Scholar

[21]

M. Remoissenet, Waves Called Solitons. Concepts and Experiments, Advanced Texts in Physics, Springer-Verlag, Berlin, 1999. doi: 10.1007/978-3-662-03790-4.  Google Scholar

[22]

W. H. Renninger and P. T. Rakich, Closed-form solutions and scaling laws for Kerr frequency combs, Scientific Reports, 6 (2016). doi: 10.1038/srep24742.  Google Scholar

[23]

K. Sakkaravarthi and T. Kanna, Bright solitons in coherently coupled nonlinear Schrödinger equations with alternate signs of nonlinearities, J. Math. Phys., 54 (2013), 14pp. doi: 10.1063/1.4772611.  Google Scholar

[24]

A. Scott, Encyclopedia of Nonlinear Science, Routledge, New York, 2005. doi: 10.4324/9780203647417.  Google Scholar

[25]

V. A. Vladimirov, E. V. Kutafina and A. Pudelko, Constructing soliton and kink solutions of PDE models in transport and biology, Symmetry Integrability Geom. Methods Appl., 2 (2006), 15pp. doi: 10.3842/SIGMA.2006.061.  Google Scholar

[26]

Y. Yang, Solitons in Field Theory and Nonlinear Analysis, Springer Monographs in Mathematics, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4757-6548-9.  Google Scholar

[27]

G.-A. Zakeri and E. Yomba, Dissipative solitons in a generalized coupled cubic-quintic Ginzburg-Landau equations, J. Phys. Soc. Jpn., 82 (2013). doi: 10.7566/JPSJ.82.084002.  Google Scholar

[28]

S. Zdravković and G. Gligorić, Kinks and bell-type solitons in microtubules, Chaos, 35 (2016), 7pp. doi: 10.1063/1.4953011.  Google Scholar

show all references

References:
[1]

N. N. Akhmediev and A. Ankiewicz, Dissipative Solitons: From Optics to Biology and Medicine, Lecture Notes in Physics, 751, Springer-Verlag, Berlin, 2008. doi: 10.1007/978-3-540-78217-9.  Google Scholar

[2]

E. G. Charalampidis, P. G. Kevrekidis, D. J. Frantzeskakis and B. A. Malomed, Dark-bright solitons in coupled nonlinear Schrödinger equations with unequal dispersion coefficients, Phys. Rev. E, 91 (2015). doi: 10.1103/PhysRevE.91.012924.  Google Scholar

[3] F. CourchampL. Berec and J. Gascoigne, Allee Effects in Ecology and Conservation, Oxford University Press, Oxford, 2008.   Google Scholar
[4] T. Dauxois and M. Peyrard, Physics of Solitons, Cambridge University Press, Cambridge, 2010.   Google Scholar
[5]

W. Feng, J. Q. Li and Y. Kishimoto, Theory on bright and dark soliton formation in strongly magnetized plasmas, Physics Plasmas, 23 (2016). doi: 10.1063/1.4962846.  Google Scholar

[6]

F. Genoud, Extrema of the dynamic pressure in a solitary wave, Nonlinear Anal., 155 (2017), 65-71.  doi: 10.1016/j.na.2017.01.009.  Google Scholar

[7]

A. M. GrundlandM. Kovalyov and M. Sussman, Interaction of kink-type solutions of the harmonic map equations, J. Math. Phys., 35 (1994), 6774-6783.  doi: 10.1063/1.530642.  Google Scholar

[8]

Y.-H. Hu and S.-Y. Lou, Analytical descriptions of dark and gray solitons in nonlocal nonlinear media, Commun. Theor. Phys. (Beijing), 64 (2015), 665-670.  doi: 10.1088/0253-6102/64/6/665.  Google Scholar

[9]

A. KelkarE. Yomba and R. Djeloulli, Solitary wave solutions and modulational instability in a system of coupled complex Newell-Segel-Whitehead equations, Commun. Nonlinear Sci. Numer. Simul., 41 (2016), 118-139.  doi: 10.1016/j.cnsns.2016.04.034.  Google Scholar

[10]

J. D. Lambert, Numerical Methods for Ordinary Differential Systems. The Initial Value Problem, John Wiley & Sons, Ltd., Chichester, 1991.  Google Scholar

[11]

A. G. LópezJ. M. Seoane and M. A. F. Sanjuán, A validated mathematical model of tumor growth including tumor-host interaction, cell-mediated immune response and chemotherapy, Bull. Math. Biol., 76 (2014), 2884-2906.  doi: 10.1007/s11538-014-0037-5.  Google Scholar

[12]

H. McCallumN. Barlow and J. Hone, How should pathogen transmission be modelled?, Trends Ecol. Evol., 16 (2001), 295-300.  doi: 10.1016/S0169-5347(01)02144-9.  Google Scholar

[13]

Z. Navickas and L. Bikulciene, Expressions of solutions of ordinary differential equations by standard functions, Math. Model. Anal., 11 (2006), 399-412.  doi: 10.3846/13926292.2006.9637327.  Google Scholar

[14]

Z. NavickasR. MarcinkeviciusT. Telksnys and M. Ragulskis, Existence of second order solitary solutions to Riccati differential equations coupled with a multiplicative term, IMA. J. Appl. Math., 81 (2016), 1163-1190.  doi: 10.1093/imamat/hxw050.  Google Scholar

[15]

Z. NavickasM. Ragulskis and T. Telksnys, Existence of solitary solutions in a class of nonlinear differential equations with polynomial nonlinearity, Appl. Math. Comput., 283 (2016), 333-338.  doi: 10.1016/j.amc.2016.02.049.  Google Scholar

[16]

Z. NavickasR. VilkasT. Telksnys and M. Ragulskis, Direct and inverse relationships between Riccati systems coupled with multiplicative terms, J. Biol. Dyn., 10 (2016), 297-313.  doi: 10.1080/17513758.2016.1181801.  Google Scholar

[17]

A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, Chapman & Hall/CRC, Boca Raton, FL, 2003.  Google Scholar

[18]

Z. Qiao and J. Li, Negative-order KdV equation with both solitons and kink wave solutions, Europhys. Lett., 94 (2011), 50003. doi: 10.1209/0295-5075/94/50003.  Google Scholar

[19] W. T. Reid, Riccati Differential Equations, Mathematics in Science and Engineering, 86, Academic Press, New York-London, 1972.   Google Scholar
[20]

T. C. RelugaH. Dahari and A. S. Perelson, Analysis of hepatitis C virus infection models with hepatocyte homeostasis, SIAM J. Appl. Math., 69 (2009), 999-1023.  doi: 10.1137/080714579.  Google Scholar

[21]

M. Remoissenet, Waves Called Solitons. Concepts and Experiments, Advanced Texts in Physics, Springer-Verlag, Berlin, 1999. doi: 10.1007/978-3-662-03790-4.  Google Scholar

[22]

W. H. Renninger and P. T. Rakich, Closed-form solutions and scaling laws for Kerr frequency combs, Scientific Reports, 6 (2016). doi: 10.1038/srep24742.  Google Scholar

[23]

K. Sakkaravarthi and T. Kanna, Bright solitons in coherently coupled nonlinear Schrödinger equations with alternate signs of nonlinearities, J. Math. Phys., 54 (2013), 14pp. doi: 10.1063/1.4772611.  Google Scholar

[24]

A. Scott, Encyclopedia of Nonlinear Science, Routledge, New York, 2005. doi: 10.4324/9780203647417.  Google Scholar

[25]

V. A. Vladimirov, E. V. Kutafina and A. Pudelko, Constructing soliton and kink solutions of PDE models in transport and biology, Symmetry Integrability Geom. Methods Appl., 2 (2006), 15pp. doi: 10.3842/SIGMA.2006.061.  Google Scholar

[26]

Y. Yang, Solitons in Field Theory and Nonlinear Analysis, Springer Monographs in Mathematics, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4757-6548-9.  Google Scholar

[27]

G.-A. Zakeri and E. Yomba, Dissipative solitons in a generalized coupled cubic-quintic Ginzburg-Landau equations, J. Phys. Soc. Jpn., 82 (2013). doi: 10.7566/JPSJ.82.084002.  Google Scholar

[28]

S. Zdravković and G. Gligorić, Kinks and bell-type solitons in microtubules, Chaos, 35 (2016), 7pp. doi: 10.1063/1.4953011.  Google Scholar

Figure 1.  Kink solutions $ \widehat{x}, \widehat{y}$ to (112) with $ \widehat{c} = 1$. The black line denotes $ \widehat{x}\left(t\right)$; the gray line denotes $ \widehat{y}\left(t\right)$. In (a), $u = 10, v = -4$; in (b), $u = -2, v = 0$
Figure 2.  Kink solutions $x, y$ to (112) with $c = 0$. The black line denotes $x\left(\tau\right)$; the gray line denotes $y\left(\tau\right)$. In (a), $u = 10, v = -4$; in (b), $u = -2, v = 0$
Figure 3.  Phase plot of (112). Black lines denote kink solution trajectories. The gray circle denotes the unstable node (110). The gray dashed line denotes the equilibrium line (111). Gray arrows denote the direction field. The dotted line illustrates that perturbations in infected cell population $y$ lead to proportional changes in uninfected cell population $x$. As the solution evolves from point $A$ to $B$, $y$ increases by $0.46$, while $x$ decreases by $1.09$
Figure 4.  Plot of error (128) for $c = 0, u = 5, v = 1$. Conditions (126) and (127) hold true. The step size $h$ is $10^{-4}$; error is estimated over $N = 100$ steps. Errors higher than 10 are truncated to 10 for clarity. Note that the error is almost zero on the curve defined by (125)
Figure 5.  Plot of error (128) for $c = 0, u = 5, v = 1$. Conditions (125) and (127) hold true. The step size $h$ is $10^{-3}$; error is estimated over $N = 30$ steps. Errors higher than 2 are truncated to 2 for clarity. Note that the error is almost zero on the line defined by (126)
Figure 6.  Plot of error (128) for $c = 0, u = 5, v = 1$. Conditions (125), (126) hold true. The step size $h$ is $10^{-3}$; error is estimated over $N = 30$ steps. Errors higher than 100 are truncated to 100 for clarity. Note that the error is almost zero on the hyperbola defined by (127)
Figure 7.  Kink solutions to (132) with $ \widehat{c} = 1$. The black line denotes $ \widehat{x}\left(t\right)$; the gray line denotes $ \widehat{y}\left(t\right)$. In (a), $u = 4, v = 1$; in (b), $u = -5, v = 2$
Figure 8.  Kink solutions to (131) with $c = 0$. The black line denotes $x\left(\tau\right)$; the gray line denotes $y\left(\tau\right)$. In (a), $u = 4, v = 1$; in (b), $u = -5, v = 2$
Figure 9.  Phase plot of (131). Black lines denote kink solution trajectories. The gray diamond denotes the saddle point (129). The gray dashed line denotes the equilibrium line (130). Gray arrows denote direction field. The dotted line illustrates that large perturbations in infected cell population $y$ lead to small changes in uninfected cell population $x$. As the solution evolves from point $A$ to $B$, $y$ decreases by $5.19$, while $x$ increases by $0.39$
[1]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[2]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[3]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002

[4]

Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021025

[5]

Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024

[6]

Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017

[7]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[8]

Yumi Yahagi. Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021099

[9]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[10]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008

[11]

Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181

[12]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[13]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[14]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[15]

Monica Conti, Lorenzo Liverani, Vittorino Pata. A note on the energy transfer in coupled differential systems. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021042

[16]

Andrew Comech, Elena Kopylova. Orbital stability and spectral properties of solitary waves of Klein–Gordon equation with concentrated nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021063

[17]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3579-3614. doi: 10.3934/dcds.2021008

[18]

Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021020

[19]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[20]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (132)
  • HTML views (301)
  • Cited by (0)

[Back to Top]