# American Institute of Mathematical Sciences

November  2020, 25(11): 4427-4447. doi: 10.3934/dcdsb.2020106

## Kink solitary solutions to a hepatitis C evolution model

 1 Research Group for Mathematical, and Numerical Analysis of Dynamical Systems, Kaunas University of Technology, Studentu 50-147, Kaunas LT-51368, Lithuania 2 Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid, Spain 3 Department of Applied Informatics, Kaunas University of Technology, Studentu 50-407, Kaunas LT-51368, Lithuania 4 Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA 5 Department of Software Engineering, Kaunas University of Technology, Studentu 50-415, Kaunas LT-51368, Lithuania

Received  July 2017 Published  March 2020

The standard nonlinear hepatitis C evolution model described in (Reluga et al. 2009) is considered in this paper. The generalized differential operator technique is used to construct analytical kink solitary solutions to the governing equations coupled with multiplicative and diffusive terms. Conditions for the existence of kink solitary solutions are derived. It appears that kink solitary solutions are either in a linear or in a hyperbolic relationship. Thus, a large perturbation in the population of hepatitis infected cells does not necessarily lead to a large change in uninfected cells. Computational experiments are used to illustrate the evolution of transient solitary solutions in the hepatitis C model.

Citation: Tadas Telksnys, Zenonas Navickas, Miguel A. F. Sanjuán, Romas Marcinkevicius, Minvydas Ragulskis. Kink solitary solutions to a hepatitis C evolution model. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4427-4447. doi: 10.3934/dcdsb.2020106
##### References:

show all references

##### References:
Kink solutions $\widehat{x}, \widehat{y}$ to (112) with $\widehat{c} = 1$. The black line denotes $\widehat{x}\left(t\right)$; the gray line denotes $\widehat{y}\left(t\right)$. In (a), $u = 10, v = -4$; in (b), $u = -2, v = 0$
Kink solutions $x, y$ to (112) with $c = 0$. The black line denotes $x\left(\tau\right)$; the gray line denotes $y\left(\tau\right)$. In (a), $u = 10, v = -4$; in (b), $u = -2, v = 0$
Phase plot of (112). Black lines denote kink solution trajectories. The gray circle denotes the unstable node (110). The gray dashed line denotes the equilibrium line (111). Gray arrows denote the direction field. The dotted line illustrates that perturbations in infected cell population $y$ lead to proportional changes in uninfected cell population $x$. As the solution evolves from point $A$ to $B$, $y$ increases by $0.46$, while $x$ decreases by $1.09$
Plot of error (128) for $c = 0, u = 5, v = 1$. Conditions (126) and (127) hold true. The step size $h$ is $10^{-4}$; error is estimated over $N = 100$ steps. Errors higher than 10 are truncated to 10 for clarity. Note that the error is almost zero on the curve defined by (125)
Plot of error (128) for $c = 0, u = 5, v = 1$. Conditions (125) and (127) hold true. The step size $h$ is $10^{-3}$; error is estimated over $N = 30$ steps. Errors higher than 2 are truncated to 2 for clarity. Note that the error is almost zero on the line defined by (126)
Plot of error (128) for $c = 0, u = 5, v = 1$. Conditions (125), (126) hold true. The step size $h$ is $10^{-3}$; error is estimated over $N = 30$ steps. Errors higher than 100 are truncated to 100 for clarity. Note that the error is almost zero on the hyperbola defined by (127)
Kink solutions to (132) with $\widehat{c} = 1$. The black line denotes $\widehat{x}\left(t\right)$; the gray line denotes $\widehat{y}\left(t\right)$. In (a), $u = 4, v = 1$; in (b), $u = -5, v = 2$
Kink solutions to (131) with $c = 0$. The black line denotes $x\left(\tau\right)$; the gray line denotes $y\left(\tau\right)$. In (a), $u = 4, v = 1$; in (b), $u = -5, v = 2$
Phase plot of (131). Black lines denote kink solution trajectories. The gray diamond denotes the saddle point (129). The gray dashed line denotes the equilibrium line (130). Gray arrows denote direction field. The dotted line illustrates that large perturbations in infected cell population $y$ lead to small changes in uninfected cell population $x$. As the solution evolves from point $A$ to $B$, $y$ decreases by $5.19$, while $x$ increases by $0.39$
 [1] Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023 [2] Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 [3] Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002 [4] Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021025 [5] Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024 [6] Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017 [7] Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 [8] Yumi Yahagi. Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021099 [9] Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 [10] Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008 [11] Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181 [12] Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 [13] Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 [14] Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 [15] Monica Conti, Lorenzo Liverani, Vittorino Pata. A note on the energy transfer in coupled differential systems. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021042 [16] Andrew Comech, Elena Kopylova. Orbital stability and spectral properties of solitary waves of Klein–Gordon equation with concentrated nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021063 [17] Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3579-3614. doi: 10.3934/dcds.2021008 [18] Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021020 [19] Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 [20] Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

2019 Impact Factor: 1.27