-
Previous Article
A spatially heterogeneous predator-prey model
- DCDS-B Home
- This Issue
-
Next Article
The optimal distribution of resources and rate of migration maximizing the population size in logistic model with identical migration
On the semilinear fractional elliptic equations with singular weight functions
Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung 811, Taiwan |
$ \begin{equation*} \left\{ \begin{array}{ll} (-\Delta)^{\alpha} u+V_{\lambda }\left( x\right) u = f\left( x\right) \left\vert u\right\vert ^{q-2}u+g\left( x\right) \left\vert u\right\vert ^{p-2}u & \text{in }\mathbb{R}^{N}, \\ u\in H^{\alpha}(\mathbb{R}^{N}), & \end{array}\right. \end{equation*} $ |
$ \alpha\in (0,1] $ |
$ 1<q<2<p<2_{\alpha}^{\ast }\ \left( 2_{\alpha}^{\ast } = \frac{2N}{N-2\alpha}\text{ for}\ N> 2\alpha\right), $ |
$ V_{\lambda }(x) = \lambda a(x)-b(x) $ |
$ \lambda >0. $ |
$ a,b $ |
$ f,g $ |
$ \lambda $ |
$ f, g $ |
$ \mathbb{R}^{N}. $ |
References:
[1] |
P. Adimurthy, F. Pacella and S. L. Yadava,
On the number of positive solutions of some semilinear Dirichlet problems in a ball, Diff. Int. Equations, 10 (1997), 1157-1170.
|
[2] |
C. O. Alves and G. M. Figueiredo,
Multi-bump solutions for a Kirchhoff-type problem, Adv. Nonlinear Anal., 5 (2016), 1-26.
doi: 10.1515/anona-2015-0101. |
[3] |
A. Ambrosetti, J. G. Azorero and I. Peral,
Multiplicity results for some nonlinear elliptic equations, J. Funct. Anal., 137 (1996), 219-242.
doi: 10.1006/jfan.1996.0045. |
[4] |
A. Ambrosetti, J. G. Azorero and I. Peral,
Elliptic variational problems in $\mathbb{R^N}$ with critical growth, J. Differential Equations, 168 (2000), 10-32.
doi: 10.1006/jdeq.2000.3875. |
[5] |
A. Ambrosetti, H. Brezis and G. Cerami,
Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.
doi: 10.1006/jfan.1994.1078. |
[6] |
B. Barrios, E. Colorado, A. de Pablo and U. Sánchez,
On some critical problems for the fractional Laplacian operator, J. Differential Equations, 252 (2012), 6133-6162.
doi: 10.1016/j.jde.2012.02.023. |
[7] |
B. Barrios, E. Colorado, R. Servadei and F. Soria,
A critical fractional equation with concave-convex power nonlinearities, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 875-900.
doi: 10.1016/j.anihpc.2014.04.003. |
[8] |
T. Bartsch, A. Pankov and Z.-Q. Wang,
Nonlinear Schrödinger equations with steep potential well, Commun. Contemp. Math., 3 (2001), 549-569.
doi: 10.1142/S0219199701000494. |
[9] |
T. Bartsch and Z. Q. Wang,
Existence and multiplicity results for some superlinear elliptic problems on $\mathbb{R}^{N}$, Comm. Partial Differential Equations, 20 (1995), 1725-1741.
doi: 10.1080/03605309508821149. |
[10] |
H. Berestycki, J.-M. Roquejoffre and L. Rossi,
The periodic patch model for population dynamics with fractional diffusion, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 1-13.
doi: 10.3934/dcdss.2011.4.1. |
[11] |
P. A. Binding, P. Drábek and Y. X. Huang, On Neumann boundary value problems for some quasilinear elliptic equations, Electr. J. Diff. Eqns., (1997), 11 pp. |
[12] |
K. J. Brown andd T.-F. Wu, A fibering map approach to a semilinear elliptic boundary value problem, Electr. J. Diff. Eqns., (2007), 9 pp. |
[13] |
K. J. Brown and T. F. Wu,
A fibering map approach to a potential operator equation and its applications, Diff. Int. Equations, 22 (2009), 1097-1114.
|
[14] |
K. J. Brown and Y. Zhang,
The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function, J. Diff. Equns, 193 (2003), 481-499.
doi: 10.1016/S0022-0396(03)00121-9. |
[15] |
L. Caffarelli, S. Dipierro and E. Valdinoci,
A logistic equation with nonlocal interactions, Kinet. Relat. Models, 10 (2017), 141-170.
doi: 10.3934/krm.2017006. |
[16] |
J. Chabrowski and João Marcos Bezzera do Ó,
On semilinear elliptic equations involving concave and convex nonlinearities, Math. Nachr., 233/234 (2002), 55-76.
doi: 10.1002/1522-2616(200201)233:1<55::AID-MANA55>3.0.CO;2-R. |
[17] |
C.-Y. Chen and T.-F. Wu,
Multiple positive solutions for indefinite semilinear elliptic problems involving a critical Sobolev exponent, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 691-709.
doi: 10.1017/S0308210512000133. |
[18] |
Y.-H. Cheng and T. F. Wu,
Multiplicity and concentration of positive solutions for semilinear elliptic equaitons with steep potential, Commun. Pure Appl. Anal., 15 (2016), 2457-2473.
doi: 10.3934/cpaa.2016044. |
[19] |
R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC Financ. Math. Ser., Chapman & Hall/CRC, Boca Raton, FL, 2004. |
[20] |
L. Damascelli, M. Grossi and F. Pacella,
Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle, Annls Inst. H. Poincaré Analyse Non linéaire, 16 (1999), 631-652.
doi: 10.1016/S0294-1449(99)80030-4. |
[21] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhikers guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[22] |
P. Drábek and S. I. Pohozaev,
Positive solutions for the $p$-Laplacian: Application of the fibering method, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 703-726.
doi: 10.1017/S0308210500023787. |
[23] |
I. Ekeland,
On the variational principle, J. Math. Anal. Appl., 17 (1974), 324-353.
doi: 10.1016/0022-247X(74)90025-0. |
[24] |
A. Elgart and B. Schlein,
Mean field dynamics of boson stars, Comm. Pure Appl. Math., 60 (2007), 500-545.
doi: 10.1002/cpa.20134. |
[25] |
P. Felmer, A. Quaas and J. Tan,
Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A., 142 (2012), 1237-1262.
doi: 10.1017/S0308210511000746. |
[26] |
J. Fhlich, B. L. G. Jonsson and E. Lenzmann,
Boson stars as solitary waves, Comm. Math. Phys., 274 (2007), 1-30.
doi: 10.1007/s00220-007-0272-9. |
[27] |
D. G. de Figueiredo, J. P. Gossez and P. Ubilla,
Local superlinearity and sublinearity for indefinite semilinear elliptic problems, J. Funct. Anal., 199 (2003), 452-467.
doi: 10.1016/S0022-1236(02)00060-5. |
[28] |
J. Frhlich and E. Lenzmann,
Blowup for nonlinear wave equations describing boson stars, Comm. Pure Appl. Math., 60 (2007), 1691-1705.
doi: 10.1002/cpa.20186. |
[29] |
J. V. Goncalves and O. H. Miyagaki,
Multiple positive solutions for semilinear elliptic equations in $\mathbb{R}^{N}$ involving subcritical exponents, Nonlinear Analysis, 32 (1998), 41-51.
doi: 10.1016/S0362-546X(97)00451-3. |
[30] |
T.-S. Hsu and H. L. Lin, Multiple positive solutions for semilinear elliptic equations in $\mathbb{R}^{N}$ involving concave-convex nonlineatlties and sign-changing weight functions, Abstract and Applied Analysis, 2010 (2010), Art. ID 658397, 21 pp.
doi: 10.1155/2010/658397. |
[31] |
N. Laskin,
Fractional quantum mechanics and Lvy path integral, Phys. Lett. A, 268 (2000), 298-305.
doi: 10.1016/S0375-9601(00)00201-2. |
[32] |
N. Laskin, Fractional Schrödinger equation, Phys. Rev. E., 66 (2002), 056108, 7 pp.
doi: 10.1103/PhysRevE.66.056108. |
[33] |
F.-F. Liao and C.-L. Tang,
Four positive solutions of a quasilinear elliptic equation in $\mathbb{R}^{N},$, Comm. Pure Appl. Anal., 12 (2013), 2577-2600.
doi: 10.3934/cpaa.2013.12.2577. |
[34] |
E. H. Lieb and H.-T. Yau,
The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Comm. Math. Phys., 112 (1987), 147-174.
doi: 10.1007/BF01217684. |
[35] |
P.-L. Lions,
The concentration-compactness principle in the calculus of variations. The local compact case. I, Ann. Inst. H. Poincar é Anal. Non Lineairé, 1 (1984), 109-145.
doi: 10.1016/S0294-1449(16)30428-0. |
[36] |
Z. Liu and Z.-Q. Wang,
Schrödinger equations with concave and convex nonlinearities, Z. Angew. Math. Phys., 56 (2005), 609-629.
doi: 10.1007/s00033-005-3115-6. |
[37] |
S. Mao and A. Xia,
Multiplicity results of nonlinear fractional magnetic Schrödinger equation with steep potential, Appl. Math. Lett., 97 (2019), 73-80.
doi: 10.1016/j.aml.2019.05.027. |
[38] |
A. Massaccesi and E. Valdinoci,
Is a nonlocal diffusion strategy convenient for biological populations in competition?, J. Math. Biol., 74 (2017), 113-147.
doi: 10.1007/s00285-016-1019-z. |
[39] |
T. Ouyang and J. Shi,
Exact multiplicity of positive solutions for a class of semilinear problem Ⅱ, J. Diff. Eqns., 158 (1999), 94-151.
doi: 10.1016/S0022-0396(99)80020-5. |
[40] |
F. O. de Paiva,
Nonnegative solutions of elliptic problems with sublinear indefinite nonlinearity, J. Func. Anal., 261 (2011), 2569-2586.
doi: 10.1016/j.jfa.2011.07.002. |
[41] |
S. Peng and A. Xia,
Multiplicity and concentration of solutions for nonlinear fractional elliptic equations with steep potential, Commun. Pure Appl. Anal., 17 (2018), 1201-1217.
doi: 10.3934/cpaa.2018058. |
[42] |
A. Quaas and A. Xia, Multiple positive solutions for nonlinear critical fractional elliptic equations involving sign-changing weight functions, Z. Angew. Math. Phys., 67 (2016), Art. 40, 21 pp.
doi: 10.1007/s00033-016-0631-5. |
[43] |
J. Sun and T.-F. Wu,
Ground state solutions for an indefinite Kirchhoff type problem with steep potential well, J. Differential Equations, 256 (2014), 1771-1792.
doi: 10.1016/j.jde.2013.12.006. |
[44] |
M. Tang,
Exact multiplicity for semilinear elliptic Dirichlet problems involving concave and convex nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 705-717.
doi: 10.1017/S0308210500002614. |
[45] |
Q. Wang,
The Nehari manifold for a fractional Laplacian equation involving critical nonlinearities, Commun. Pure Appl. Anal., 17 (2018), 2261-2281.
doi: 10.3934/cpaa.2018108. |
[46] |
T. F. Wu,
On semilinear elliptic equations involving concave–convex nonlinearities and sign-changing weight function, J. Math. Anal. Appl., 318 (2006), 253-270.
doi: 10.1016/j.jmaa.2005.05.057. |
[47] |
T.-F. Wu,
Multiplicity of positive solutions for semilinear elliptic equations in $\mathbb{R}^{N}$, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 647-670.
doi: 10.1017/S0308210506001156. |
[48] |
T.-F. Wu,
Three positive solutions for Dirichlet problems involving critical Sobolev exponent and sign-changing weight, J. Differ. Equat., 249 (2010), 1459-1578.
doi: 10.1016/j.jde.2010.07.021. |
[49] |
T. F. Wu,
Multiple positive solutions for a class of concave-convex elliptic problem in $\mathbb{R}^{N}$ involving sign-changing weight, J. Funct. Anal., 258 (2010), 99-131.
doi: 10.1016/j.jfa.2009.08.005. |
[50] |
H. Yin, Z. Yang and Z. Feng,
Multiple positive solutions for a quasilinear elliptic equation in $\mathbb{R}^{N}$, Diff. Integ. Eqns, 25 (2012), 977-992.
|
[51] |
L. Zhao, H. Liu and F. Zhao,
Existence and concentration of solutions for the Schrödinger–Poisson equations with steep well potential, J. Diff. Eqns., 255 (2013), 1-23.
doi: 10.1016/j.jde.2013.03.005. |
show all references
References:
[1] |
P. Adimurthy, F. Pacella and S. L. Yadava,
On the number of positive solutions of some semilinear Dirichlet problems in a ball, Diff. Int. Equations, 10 (1997), 1157-1170.
|
[2] |
C. O. Alves and G. M. Figueiredo,
Multi-bump solutions for a Kirchhoff-type problem, Adv. Nonlinear Anal., 5 (2016), 1-26.
doi: 10.1515/anona-2015-0101. |
[3] |
A. Ambrosetti, J. G. Azorero and I. Peral,
Multiplicity results for some nonlinear elliptic equations, J. Funct. Anal., 137 (1996), 219-242.
doi: 10.1006/jfan.1996.0045. |
[4] |
A. Ambrosetti, J. G. Azorero and I. Peral,
Elliptic variational problems in $\mathbb{R^N}$ with critical growth, J. Differential Equations, 168 (2000), 10-32.
doi: 10.1006/jdeq.2000.3875. |
[5] |
A. Ambrosetti, H. Brezis and G. Cerami,
Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.
doi: 10.1006/jfan.1994.1078. |
[6] |
B. Barrios, E. Colorado, A. de Pablo and U. Sánchez,
On some critical problems for the fractional Laplacian operator, J. Differential Equations, 252 (2012), 6133-6162.
doi: 10.1016/j.jde.2012.02.023. |
[7] |
B. Barrios, E. Colorado, R. Servadei and F. Soria,
A critical fractional equation with concave-convex power nonlinearities, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 875-900.
doi: 10.1016/j.anihpc.2014.04.003. |
[8] |
T. Bartsch, A. Pankov and Z.-Q. Wang,
Nonlinear Schrödinger equations with steep potential well, Commun. Contemp. Math., 3 (2001), 549-569.
doi: 10.1142/S0219199701000494. |
[9] |
T. Bartsch and Z. Q. Wang,
Existence and multiplicity results for some superlinear elliptic problems on $\mathbb{R}^{N}$, Comm. Partial Differential Equations, 20 (1995), 1725-1741.
doi: 10.1080/03605309508821149. |
[10] |
H. Berestycki, J.-M. Roquejoffre and L. Rossi,
The periodic patch model for population dynamics with fractional diffusion, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 1-13.
doi: 10.3934/dcdss.2011.4.1. |
[11] |
P. A. Binding, P. Drábek and Y. X. Huang, On Neumann boundary value problems for some quasilinear elliptic equations, Electr. J. Diff. Eqns., (1997), 11 pp. |
[12] |
K. J. Brown andd T.-F. Wu, A fibering map approach to a semilinear elliptic boundary value problem, Electr. J. Diff. Eqns., (2007), 9 pp. |
[13] |
K. J. Brown and T. F. Wu,
A fibering map approach to a potential operator equation and its applications, Diff. Int. Equations, 22 (2009), 1097-1114.
|
[14] |
K. J. Brown and Y. Zhang,
The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function, J. Diff. Equns, 193 (2003), 481-499.
doi: 10.1016/S0022-0396(03)00121-9. |
[15] |
L. Caffarelli, S. Dipierro and E. Valdinoci,
A logistic equation with nonlocal interactions, Kinet. Relat. Models, 10 (2017), 141-170.
doi: 10.3934/krm.2017006. |
[16] |
J. Chabrowski and João Marcos Bezzera do Ó,
On semilinear elliptic equations involving concave and convex nonlinearities, Math. Nachr., 233/234 (2002), 55-76.
doi: 10.1002/1522-2616(200201)233:1<55::AID-MANA55>3.0.CO;2-R. |
[17] |
C.-Y. Chen and T.-F. Wu,
Multiple positive solutions for indefinite semilinear elliptic problems involving a critical Sobolev exponent, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 691-709.
doi: 10.1017/S0308210512000133. |
[18] |
Y.-H. Cheng and T. F. Wu,
Multiplicity and concentration of positive solutions for semilinear elliptic equaitons with steep potential, Commun. Pure Appl. Anal., 15 (2016), 2457-2473.
doi: 10.3934/cpaa.2016044. |
[19] |
R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC Financ. Math. Ser., Chapman & Hall/CRC, Boca Raton, FL, 2004. |
[20] |
L. Damascelli, M. Grossi and F. Pacella,
Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle, Annls Inst. H. Poincaré Analyse Non linéaire, 16 (1999), 631-652.
doi: 10.1016/S0294-1449(99)80030-4. |
[21] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhikers guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[22] |
P. Drábek and S. I. Pohozaev,
Positive solutions for the $p$-Laplacian: Application of the fibering method, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 703-726.
doi: 10.1017/S0308210500023787. |
[23] |
I. Ekeland,
On the variational principle, J. Math. Anal. Appl., 17 (1974), 324-353.
doi: 10.1016/0022-247X(74)90025-0. |
[24] |
A. Elgart and B. Schlein,
Mean field dynamics of boson stars, Comm. Pure Appl. Math., 60 (2007), 500-545.
doi: 10.1002/cpa.20134. |
[25] |
P. Felmer, A. Quaas and J. Tan,
Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A., 142 (2012), 1237-1262.
doi: 10.1017/S0308210511000746. |
[26] |
J. Fhlich, B. L. G. Jonsson and E. Lenzmann,
Boson stars as solitary waves, Comm. Math. Phys., 274 (2007), 1-30.
doi: 10.1007/s00220-007-0272-9. |
[27] |
D. G. de Figueiredo, J. P. Gossez and P. Ubilla,
Local superlinearity and sublinearity for indefinite semilinear elliptic problems, J. Funct. Anal., 199 (2003), 452-467.
doi: 10.1016/S0022-1236(02)00060-5. |
[28] |
J. Frhlich and E. Lenzmann,
Blowup for nonlinear wave equations describing boson stars, Comm. Pure Appl. Math., 60 (2007), 1691-1705.
doi: 10.1002/cpa.20186. |
[29] |
J. V. Goncalves and O. H. Miyagaki,
Multiple positive solutions for semilinear elliptic equations in $\mathbb{R}^{N}$ involving subcritical exponents, Nonlinear Analysis, 32 (1998), 41-51.
doi: 10.1016/S0362-546X(97)00451-3. |
[30] |
T.-S. Hsu and H. L. Lin, Multiple positive solutions for semilinear elliptic equations in $\mathbb{R}^{N}$ involving concave-convex nonlineatlties and sign-changing weight functions, Abstract and Applied Analysis, 2010 (2010), Art. ID 658397, 21 pp.
doi: 10.1155/2010/658397. |
[31] |
N. Laskin,
Fractional quantum mechanics and Lvy path integral, Phys. Lett. A, 268 (2000), 298-305.
doi: 10.1016/S0375-9601(00)00201-2. |
[32] |
N. Laskin, Fractional Schrödinger equation, Phys. Rev. E., 66 (2002), 056108, 7 pp.
doi: 10.1103/PhysRevE.66.056108. |
[33] |
F.-F. Liao and C.-L. Tang,
Four positive solutions of a quasilinear elliptic equation in $\mathbb{R}^{N},$, Comm. Pure Appl. Anal., 12 (2013), 2577-2600.
doi: 10.3934/cpaa.2013.12.2577. |
[34] |
E. H. Lieb and H.-T. Yau,
The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Comm. Math. Phys., 112 (1987), 147-174.
doi: 10.1007/BF01217684. |
[35] |
P.-L. Lions,
The concentration-compactness principle in the calculus of variations. The local compact case. I, Ann. Inst. H. Poincar é Anal. Non Lineairé, 1 (1984), 109-145.
doi: 10.1016/S0294-1449(16)30428-0. |
[36] |
Z. Liu and Z.-Q. Wang,
Schrödinger equations with concave and convex nonlinearities, Z. Angew. Math. Phys., 56 (2005), 609-629.
doi: 10.1007/s00033-005-3115-6. |
[37] |
S. Mao and A. Xia,
Multiplicity results of nonlinear fractional magnetic Schrödinger equation with steep potential, Appl. Math. Lett., 97 (2019), 73-80.
doi: 10.1016/j.aml.2019.05.027. |
[38] |
A. Massaccesi and E. Valdinoci,
Is a nonlocal diffusion strategy convenient for biological populations in competition?, J. Math. Biol., 74 (2017), 113-147.
doi: 10.1007/s00285-016-1019-z. |
[39] |
T. Ouyang and J. Shi,
Exact multiplicity of positive solutions for a class of semilinear problem Ⅱ, J. Diff. Eqns., 158 (1999), 94-151.
doi: 10.1016/S0022-0396(99)80020-5. |
[40] |
F. O. de Paiva,
Nonnegative solutions of elliptic problems with sublinear indefinite nonlinearity, J. Func. Anal., 261 (2011), 2569-2586.
doi: 10.1016/j.jfa.2011.07.002. |
[41] |
S. Peng and A. Xia,
Multiplicity and concentration of solutions for nonlinear fractional elliptic equations with steep potential, Commun. Pure Appl. Anal., 17 (2018), 1201-1217.
doi: 10.3934/cpaa.2018058. |
[42] |
A. Quaas and A. Xia, Multiple positive solutions for nonlinear critical fractional elliptic equations involving sign-changing weight functions, Z. Angew. Math. Phys., 67 (2016), Art. 40, 21 pp.
doi: 10.1007/s00033-016-0631-5. |
[43] |
J. Sun and T.-F. Wu,
Ground state solutions for an indefinite Kirchhoff type problem with steep potential well, J. Differential Equations, 256 (2014), 1771-1792.
doi: 10.1016/j.jde.2013.12.006. |
[44] |
M. Tang,
Exact multiplicity for semilinear elliptic Dirichlet problems involving concave and convex nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 705-717.
doi: 10.1017/S0308210500002614. |
[45] |
Q. Wang,
The Nehari manifold for a fractional Laplacian equation involving critical nonlinearities, Commun. Pure Appl. Anal., 17 (2018), 2261-2281.
doi: 10.3934/cpaa.2018108. |
[46] |
T. F. Wu,
On semilinear elliptic equations involving concave–convex nonlinearities and sign-changing weight function, J. Math. Anal. Appl., 318 (2006), 253-270.
doi: 10.1016/j.jmaa.2005.05.057. |
[47] |
T.-F. Wu,
Multiplicity of positive solutions for semilinear elliptic equations in $\mathbb{R}^{N}$, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 647-670.
doi: 10.1017/S0308210506001156. |
[48] |
T.-F. Wu,
Three positive solutions for Dirichlet problems involving critical Sobolev exponent and sign-changing weight, J. Differ. Equat., 249 (2010), 1459-1578.
doi: 10.1016/j.jde.2010.07.021. |
[49] |
T. F. Wu,
Multiple positive solutions for a class of concave-convex elliptic problem in $\mathbb{R}^{N}$ involving sign-changing weight, J. Funct. Anal., 258 (2010), 99-131.
doi: 10.1016/j.jfa.2009.08.005. |
[50] |
H. Yin, Z. Yang and Z. Feng,
Multiple positive solutions for a quasilinear elliptic equation in $\mathbb{R}^{N}$, Diff. Integ. Eqns, 25 (2012), 977-992.
|
[51] |
L. Zhao, H. Liu and F. Zhao,
Existence and concentration of solutions for the Schrödinger–Poisson equations with steep well potential, J. Diff. Eqns., 255 (2013), 1-23.
doi: 10.1016/j.jde.2013.03.005. |
[1] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[2] |
Minh-Phuong Tran, Thanh-Nhan Nguyen. Pointwise gradient bounds for a class of very singular quasilinear elliptic equations. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021043 |
[3] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[4] |
John Villavert. On problems with weighted elliptic operator and general growth nonlinearities. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021023 |
[5] |
Bruno Premoselli. Einstein-Lichnerowicz type singular perturbations of critical nonlinear elliptic equations in dimension 3. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021069 |
[6] |
Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030 |
[7] |
Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1747-1756. doi: 10.3934/dcdss.2020452 |
[8] |
Dariusz Idczak. A Gronwall lemma for functions of two variables and its application to partial differential equations of fractional order. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021019 |
[9] |
Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827 |
[10] |
Siting Liu, Levon Nurbekyan. Splitting methods for a class of non-potential mean field games. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021014 |
[11] |
Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021009 |
[12] |
Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016 |
[13] |
Flank D. M. Bezerra, Jacson Simsen, Mariza Stefanello Simsen. Convergence of quasilinear parabolic equations to semilinear equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3823-3834. doi: 10.3934/dcdsb.2020258 |
[14] |
A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044 |
[15] |
Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021083 |
[16] |
Andrea Signori. Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2519-2542. doi: 10.3934/dcds.2020373 |
[17] |
Jinye Shen, Xian-Ming Gu. Two finite difference methods based on an H2N2 interpolation for two-dimensional time fractional mixed diffusion and diffusion-wave equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021086 |
[18] |
Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209 |
[19] |
Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021004 |
[20] |
Ruonan Liu, Run Xu. Hermite-Hadamard type inequalities for harmonical $ (h1,h2)- $convex interval-valued functions. Mathematical Foundations of Computing, 2021 doi: 10.3934/mfc.2021005 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]