• Previous Article
    Complex dynamics of a SIRS epidemic model with the influence of hospital bed number
  • DCDS-B Home
  • This Issue
  • Next Article
    Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays
December  2021, 26(12): 6207-6228. doi: 10.3934/dcdsb.2021015

The global attractor for the wave equation with nonlocal strong damping

1. 

Department of Mathematics, Nanjing University, Nanjing, 210093, China

2. 

Institute of Applied System Analysis, Jiangsu University, Zhenjiang, 212013, China

* Corresponding author: ckzhong@nju.edu.cn

Received  December 2019 Revised  October 2020 Published  December 2021 Early access  January 2021

Fund Project: The first author is supported by NSFC(11731005)

The paper is devoted to establishing the long-time behavior of solutions for the wave equation with nonlocal strong damping: $ u_{tt}-\Delta u-\|\nabla u_{t}\|^{p}\Delta u_{t}+f(u) = h(x). $ It proves the well-posedness by means of the monotone operator theory and the existence of a global attractor when the growth exponent of the nonlinearity $ f(u) $ is up to the subcritical and critical cases in natural energy space.

Citation: Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021, 26 (12) : 6207-6228. doi: 10.3934/dcdsb.2021015
References:
[1]

G. Andrews and J. M. Ball, Asymptotic behavior and changes in phase in one-dimensional nonlinear viscoelasticity, J.Dierential Equations, 44 (1982), 306-341.  doi: 10.1016/0022-0396(82)90019-5.  Google Scholar

[2]

D. D. Ang and A. P. N. Dinh, Strong solutions of a quasi-linear wave equation with nonlinear damping term, SIAM J. Math. Anal, 19 (1988), 337-347.  doi: 10.1137/0519024.  Google Scholar

[3]

F. Aloui, I. Ben Hassen and A. Haraux, Compactness of trajectories to some nonlinear second order evolution equations and applications, J. Math. Pures Appl., 100 (2013), 295–326. doi: 10.1016/j.matpur.2013.01.002.  Google Scholar

[4]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Continuous Dynam. Systems, 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[5]

V. Belleri and V. Pata, Attractors for semilinear strongly damped wave equations on $R^{3}$, Discrete Continuous Dynam. Systems, 7 (2001), 719-735.  doi: 10.3934/dcds.2001.7.719.  Google Scholar

[6]

A. V. Balakrishnan and L. W. Taylor, Distributed Parameter Nonlinear Damping Models for Flight Structures, Proceedings Damping 89, Flight Dynamics Lab and Air Force Wright Aeronautical Labs, WPAFB, 1989. Google Scholar

[7]

F. ChenB. Guo and P. Wang, Long time behavior of strongly damped nonlinear wave eqautions, J. Differential Equations, 147 (1998), 231-241.  doi: 10.1006/jdeq.1998.3447.  Google Scholar

[8]

I. D. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, University Lectures in Contemporary Mathematics, AKTA, Kharkiv, 1999.  Google Scholar

[9]

I. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping, Memoirs of AMS, 2008. doi: 10.1090/memo/0912.  Google Scholar

[10]

I. Chueshov and S. Kolbasin, Long-time dynamics in plate models with strong nonlinear damping, Commun. Pure Appl. Anal, 11 (2012), 659-674.  doi: 10.3934/cpaa.2012.11.659.  Google Scholar

[11]

J. Clements, On the existence and uniqueness of solutions of the equation $u_tt-\frac{\partial \sigma_{i}(u_xi)}{\partial x_{i}}-\Delta u_{t} = f$, Canad. Math. Bull, 18 (1975), 181-187.  doi: 10.4153/CMB-1975-036-1.  Google Scholar

[12]

E. Feireisl, Attractors for wave equations with nonlinear dissipation and critical exponent, C. R. Acad. Sci. Paris Sffer. I Math, 315 (1992), 551-555.   Google Scholar

[13]

E. Feireisl, Finite-dimensional asymptotic behavior of some semilinear damped hyperbolic problems, J. Dynam. Differential Equations, 6 (1994), 23-35.  doi: 10.1007/BF02219186.  Google Scholar

[14]

J. M. Ghidaglia and A. Marzocchi, Long-time behaviour of strongly damped wave equations, global attractors and their dimension, SIAM J. Math. Anal., 22 (1991), 879-895.  doi: 10.1137/0522057.  Google Scholar

[15]

S. GattiV. Pata and S. Zelik, A Gronwall-type lemma with parameter and dissipative estimates for PDEs, Nonlinear Analysis: Theory, Methods Applications Volume., 70 (2009), 2337-2343.  doi: 10.1016/j.na.2008.03.015.  Google Scholar

[16]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, AMS, Providence, RI, 1988. doi: 10.1090/surv/025.  Google Scholar

[17]

M. A. Jorge Silva and V. Narciso, Long-time behavior for a plate equation with nonlocal weak damping, Differential Integral Equations, 27 (2014), 931-948.   Google Scholar

[18]

M. A. Jorge Silva and V. Narciso, Long-time dynamics for a class of extensible beams with nonlocal nonlinear dampin, Evol. Equ. Control Theory, 6 (2017), 437-470.  doi: 10.3934/eect.2017023.  Google Scholar

[19]

M. A. Jorge SilvaV. Narciso and A. Vicente, On a beam model related to flight structures with nonlocal energy damping, Discrete Continuous Dynam. Systems - B., 24 (2019), 3281-3298.  doi: 10.3934/dcdsb.2018320.  Google Scholar

[20]

S. Kawashima and Y. Shibata, Global existence and exponential stability of small solutions to nonlinear viscoelasticity, Comm. Math. Phys, 148 (1992), 189-208.  doi: 10.1007/BF02102372.  Google Scholar

[21]

T. KobayashiH. Pecher and Y. Shibata, On a global in time existence theorem of smooth solutions to a nonlinear wave equation with viscosity, Math. Ann., 296 (1993), 215-234.  doi: 10.1007/BF01445103.  Google Scholar

[22]

V. Kalantarov and S. Zelik, Finite-dimensional attractors for the quasi-linear strongly-damped wave equation, J. Differential Equations., 247 (2009), 1120-1155.  doi: 10.1016/j.jde.2009.04.010.  Google Scholar

[23]

H. Lange and G. P. Menzala, Rates of decay of a nonlocal beam equation, Differential Integral Equations., 10 (1997), 1075-1092.   Google Scholar

[24]

F. J. MengM. H. Yang and C. K. Zhong, Attractors for wave equations with nonlinear damping on timedependent space, Discrete Continuous Dynam. Systems., 21 (2016), 205-225.  doi: 10.3934/dcdsb.2016.21.205.  Google Scholar

[25]

Q. F. MaS. H. Wang and C. K. Zhong, Necessary and suffcient conditions for the existence of global attractors for semigroups and applications, Indiana Univ. Math. J., 51 (2002), 1541-1559.  doi: 10.1512/iumj.2002.51.2255.  Google Scholar

[26]

M. Nakao, Energy decay for the quasi-linear wave equation with viscosity, Math. Z., 219 (1995), 289-299.  doi: 10.1007/BF02572366.  Google Scholar

[27]

V. Pata and M. Squassina, On the strongly damped wave equation, Comm. Math. Phys., 253 (2005), 511-533.  doi: 10.1007/s00220-004-1233-1.  Google Scholar

[28]

I. Perai, Multiplicity of Solutions for the p-Laplacian, Second School of Nonlinear Functional Analysis and Applications to Differential Equations 21 April-9 May, 1997. Google Scholar

[29]

V. Pata and S. Zelik, Smooth attractor for strongly damped wave equation, Noninearity, 19 (2006), 1495-1506.  doi: 10.1088/0951-7715/19/7/001.  Google Scholar

[30]

J. Simon, Compact sets in the space $L_{p}(0, T;B)$, Ann. Mat. Pure Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[31]

R. E. Showalter, Monotone Operator in Banach Spaces and Nonlinear Partial Differential Equations, Mathematical Surveys and Monographs, 49. AMS, Providence, RI, 1997. doi: 10.1090/surv/049.  Google Scholar

[32]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2$^nd$ edition, Applied Mathematical Sciences, 68, SpringerVerlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[33]

Z. J. YangP. Y. Ding and L. Li, Longtime dynamics of the Kirchhoff equations with fractional damping and supercritical nonlinearity, J. Math. Anal. Appl., 442 (2016), 485-510.  doi: 10.1016/j.jmaa.2016.04.079.  Google Scholar

[34]

Z. J. Yang, Z. M. Liu and P. P. Niu, Exponential attractor for the wave equation with structural damping and supercritical exponent, Commun. Contemp. Math., 18 (2016), 1550055, 13 pp. doi: 10.1142/S0219199715500558.  Google Scholar

[35]

Z. J. Yang and Z. M. Liu, Global attractor of the quasi-linear wave equation with strong damping, J. Math. Anal. Appl., 458 (2018), 1292-1306.  doi: 10.1016/j.jmaa.2017.10.021.  Google Scholar

[36]

C. X. ZhaoC. Y. Zhao and C. K. Zhong, The global attractor for a class of extensible beams with nonlocal weak damping, Discrete Continuous Dynam. Systems-B, 25 (2020), 935-955.  doi: 10.3934/dcdsb.2019197.  Google Scholar

[37]

C. Y. Zhao, C. X. Zhao and C. K. Zhong, Asymptotic behaviour of the wave equation with nonlocal weak damping and anti-damping., J. Math. Anal. Appl., 490 (2020), 124186, 10 pp. doi: 10.1016/j.jmaa.2020.124186.  Google Scholar

[38]

C. Zhao, S. Ma and C. Zhong, Long-time behavior for a class of extensible beams with nonlocal weak damping and critical nonlinearity, J. Math. Phys., 61 (2020), 032701, 15 pp. doi: 10.1063/1.5128686.  Google Scholar

show all references

References:
[1]

G. Andrews and J. M. Ball, Asymptotic behavior and changes in phase in one-dimensional nonlinear viscoelasticity, J.Dierential Equations, 44 (1982), 306-341.  doi: 10.1016/0022-0396(82)90019-5.  Google Scholar

[2]

D. D. Ang and A. P. N. Dinh, Strong solutions of a quasi-linear wave equation with nonlinear damping term, SIAM J. Math. Anal, 19 (1988), 337-347.  doi: 10.1137/0519024.  Google Scholar

[3]

F. Aloui, I. Ben Hassen and A. Haraux, Compactness of trajectories to some nonlinear second order evolution equations and applications, J. Math. Pures Appl., 100 (2013), 295–326. doi: 10.1016/j.matpur.2013.01.002.  Google Scholar

[4]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Continuous Dynam. Systems, 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[5]

V. Belleri and V. Pata, Attractors for semilinear strongly damped wave equations on $R^{3}$, Discrete Continuous Dynam. Systems, 7 (2001), 719-735.  doi: 10.3934/dcds.2001.7.719.  Google Scholar

[6]

A. V. Balakrishnan and L. W. Taylor, Distributed Parameter Nonlinear Damping Models for Flight Structures, Proceedings Damping 89, Flight Dynamics Lab and Air Force Wright Aeronautical Labs, WPAFB, 1989. Google Scholar

[7]

F. ChenB. Guo and P. Wang, Long time behavior of strongly damped nonlinear wave eqautions, J. Differential Equations, 147 (1998), 231-241.  doi: 10.1006/jdeq.1998.3447.  Google Scholar

[8]

I. D. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, University Lectures in Contemporary Mathematics, AKTA, Kharkiv, 1999.  Google Scholar

[9]

I. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping, Memoirs of AMS, 2008. doi: 10.1090/memo/0912.  Google Scholar

[10]

I. Chueshov and S. Kolbasin, Long-time dynamics in plate models with strong nonlinear damping, Commun. Pure Appl. Anal, 11 (2012), 659-674.  doi: 10.3934/cpaa.2012.11.659.  Google Scholar

[11]

J. Clements, On the existence and uniqueness of solutions of the equation $u_tt-\frac{\partial \sigma_{i}(u_xi)}{\partial x_{i}}-\Delta u_{t} = f$, Canad. Math. Bull, 18 (1975), 181-187.  doi: 10.4153/CMB-1975-036-1.  Google Scholar

[12]

E. Feireisl, Attractors for wave equations with nonlinear dissipation and critical exponent, C. R. Acad. Sci. Paris Sffer. I Math, 315 (1992), 551-555.   Google Scholar

[13]

E. Feireisl, Finite-dimensional asymptotic behavior of some semilinear damped hyperbolic problems, J. Dynam. Differential Equations, 6 (1994), 23-35.  doi: 10.1007/BF02219186.  Google Scholar

[14]

J. M. Ghidaglia and A. Marzocchi, Long-time behaviour of strongly damped wave equations, global attractors and their dimension, SIAM J. Math. Anal., 22 (1991), 879-895.  doi: 10.1137/0522057.  Google Scholar

[15]

S. GattiV. Pata and S. Zelik, A Gronwall-type lemma with parameter and dissipative estimates for PDEs, Nonlinear Analysis: Theory, Methods Applications Volume., 70 (2009), 2337-2343.  doi: 10.1016/j.na.2008.03.015.  Google Scholar

[16]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, AMS, Providence, RI, 1988. doi: 10.1090/surv/025.  Google Scholar

[17]

M. A. Jorge Silva and V. Narciso, Long-time behavior for a plate equation with nonlocal weak damping, Differential Integral Equations, 27 (2014), 931-948.   Google Scholar

[18]

M. A. Jorge Silva and V. Narciso, Long-time dynamics for a class of extensible beams with nonlocal nonlinear dampin, Evol. Equ. Control Theory, 6 (2017), 437-470.  doi: 10.3934/eect.2017023.  Google Scholar

[19]

M. A. Jorge SilvaV. Narciso and A. Vicente, On a beam model related to flight structures with nonlocal energy damping, Discrete Continuous Dynam. Systems - B., 24 (2019), 3281-3298.  doi: 10.3934/dcdsb.2018320.  Google Scholar

[20]

S. Kawashima and Y. Shibata, Global existence and exponential stability of small solutions to nonlinear viscoelasticity, Comm. Math. Phys, 148 (1992), 189-208.  doi: 10.1007/BF02102372.  Google Scholar

[21]

T. KobayashiH. Pecher and Y. Shibata, On a global in time existence theorem of smooth solutions to a nonlinear wave equation with viscosity, Math. Ann., 296 (1993), 215-234.  doi: 10.1007/BF01445103.  Google Scholar

[22]

V. Kalantarov and S. Zelik, Finite-dimensional attractors for the quasi-linear strongly-damped wave equation, J. Differential Equations., 247 (2009), 1120-1155.  doi: 10.1016/j.jde.2009.04.010.  Google Scholar

[23]

H. Lange and G. P. Menzala, Rates of decay of a nonlocal beam equation, Differential Integral Equations., 10 (1997), 1075-1092.   Google Scholar

[24]

F. J. MengM. H. Yang and C. K. Zhong, Attractors for wave equations with nonlinear damping on timedependent space, Discrete Continuous Dynam. Systems., 21 (2016), 205-225.  doi: 10.3934/dcdsb.2016.21.205.  Google Scholar

[25]

Q. F. MaS. H. Wang and C. K. Zhong, Necessary and suffcient conditions for the existence of global attractors for semigroups and applications, Indiana Univ. Math. J., 51 (2002), 1541-1559.  doi: 10.1512/iumj.2002.51.2255.  Google Scholar

[26]

M. Nakao, Energy decay for the quasi-linear wave equation with viscosity, Math. Z., 219 (1995), 289-299.  doi: 10.1007/BF02572366.  Google Scholar

[27]

V. Pata and M. Squassina, On the strongly damped wave equation, Comm. Math. Phys., 253 (2005), 511-533.  doi: 10.1007/s00220-004-1233-1.  Google Scholar

[28]

I. Perai, Multiplicity of Solutions for the p-Laplacian, Second School of Nonlinear Functional Analysis and Applications to Differential Equations 21 April-9 May, 1997. Google Scholar

[29]

V. Pata and S. Zelik, Smooth attractor for strongly damped wave equation, Noninearity, 19 (2006), 1495-1506.  doi: 10.1088/0951-7715/19/7/001.  Google Scholar

[30]

J. Simon, Compact sets in the space $L_{p}(0, T;B)$, Ann. Mat. Pure Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[31]

R. E. Showalter, Monotone Operator in Banach Spaces and Nonlinear Partial Differential Equations, Mathematical Surveys and Monographs, 49. AMS, Providence, RI, 1997. doi: 10.1090/surv/049.  Google Scholar

[32]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2$^nd$ edition, Applied Mathematical Sciences, 68, SpringerVerlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[33]

Z. J. YangP. Y. Ding and L. Li, Longtime dynamics of the Kirchhoff equations with fractional damping and supercritical nonlinearity, J. Math. Anal. Appl., 442 (2016), 485-510.  doi: 10.1016/j.jmaa.2016.04.079.  Google Scholar

[34]

Z. J. Yang, Z. M. Liu and P. P. Niu, Exponential attractor for the wave equation with structural damping and supercritical exponent, Commun. Contemp. Math., 18 (2016), 1550055, 13 pp. doi: 10.1142/S0219199715500558.  Google Scholar

[35]

Z. J. Yang and Z. M. Liu, Global attractor of the quasi-linear wave equation with strong damping, J. Math. Anal. Appl., 458 (2018), 1292-1306.  doi: 10.1016/j.jmaa.2017.10.021.  Google Scholar

[36]

C. X. ZhaoC. Y. Zhao and C. K. Zhong, The global attractor for a class of extensible beams with nonlocal weak damping, Discrete Continuous Dynam. Systems-B, 25 (2020), 935-955.  doi: 10.3934/dcdsb.2019197.  Google Scholar

[37]

C. Y. Zhao, C. X. Zhao and C. K. Zhong, Asymptotic behaviour of the wave equation with nonlocal weak damping and anti-damping., J. Math. Anal. Appl., 490 (2020), 124186, 10 pp. doi: 10.1016/j.jmaa.2020.124186.  Google Scholar

[38]

C. Zhao, S. Ma and C. Zhong, Long-time behavior for a class of extensible beams with nonlocal weak damping and critical nonlinearity, J. Math. Phys., 61 (2020), 032701, 15 pp. doi: 10.1063/1.5128686.  Google Scholar

[1]

Fengjuan Meng, Chengkui Zhong. Multiple equilibrium points in global attractor for the weakly damped wave equation with critical exponent. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 217-230. doi: 10.3934/dcdsb.2014.19.217

[2]

Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete & Continuous Dynamical Systems, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307

[3]

Sergey Zelik. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Communications on Pure & Applied Analysis, 2004, 3 (4) : 921-934. doi: 10.3934/cpaa.2004.3.921

[4]

A. Kh. Khanmamedov. Global attractors for strongly damped wave equations with displacement dependent damping and nonlinear source term of critical exponent. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 119-138. doi: 10.3934/dcds.2011.31.119

[5]

Zhaojuan Wang, Shengfan Zhou. Random attractor for stochastic non-autonomous damped wave equation with critical exponent. Discrete & Continuous Dynamical Systems, 2017, 37 (1) : 545-573. doi: 10.3934/dcds.2017022

[6]

Igor Chueshov, Irena Lasiecka, Daniel Toundykov. Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent. Discrete & Continuous Dynamical Systems, 2008, 20 (3) : 459-509. doi: 10.3934/dcds.2008.20.459

[7]

Dalibor Pražák. On the dimension of the attractor for the wave equation with nonlinear damping. Communications on Pure & Applied Analysis, 2005, 4 (1) : 165-174. doi: 10.3934/cpaa.2005.4.165

[8]

Maurizio Grasselli, Vittorino Pata. On the damped semilinear wave equation with critical exponent. Conference Publications, 2003, 2003 (Special) : 351-358. doi: 10.3934/proc.2003.2003.351

[9]

Filippo Dell'Oro. Global attractors for strongly damped wave equations with subcritical-critical nonlinearities. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1015-1027. doi: 10.3934/cpaa.2013.12.1015

[10]

Chunxiang Zhao, Chunyan Zhao, Chengkui Zhong. The global attractor for a class of extensible beams with nonlocal weak damping. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 935-955. doi: 10.3934/dcdsb.2019197

[11]

Nicolas Fourrier, Irena Lasiecka. Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions. Evolution Equations & Control Theory, 2013, 2 (4) : 631-667. doi: 10.3934/eect.2013.2.631

[12]

Menglan Liao. The lifespan of solutions for a viscoelastic wave equation with a strong damping and logarithmic nonlinearity. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021025

[13]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[14]

Azer Khanmamedov, Sema Simsek. Existence of the global attractor for the plate equation with nonlocal nonlinearity in $ \mathbb{R} ^{n}$. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 151-172. doi: 10.3934/dcdsb.2016.21.151

[15]

D. Hilhorst, L. A. Peletier, A. I. Rotariu, G. Sivashinsky. Global attractor and inertial sets for a nonlocal Kuramoto-Sivashinsky equation. Discrete & Continuous Dynamical Systems, 2004, 10 (1&2) : 557-580. doi: 10.3934/dcds.2004.10.557

[16]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

[17]

Zhijian Yang, Zhiming Liu. Global attractor for a strongly damped wave equation with fully supercritical nonlinearities. Discrete & Continuous Dynamical Systems, 2017, 37 (4) : 2181-2205. doi: 10.3934/dcds.2017094

[18]

Brahim Alouini. Global attractor for a one dimensional weakly damped half-wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (8) : 2655-2670. doi: 10.3934/dcdss.2020410

[19]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete & Continuous Dynamical Systems, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[20]

Lingwei Ma, Zhong Bo Fang. A new second critical exponent and life span for a quasilinear degenerate parabolic equation with weighted nonlocal sources. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1697-1706. doi: 10.3934/cpaa.2017081

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (271)
  • HTML views (357)
  • Cited by (0)

Other articles
by authors

[Back to Top]