January  2022, 27(1): 1-44. doi: 10.3934/dcdsb.2021031

First Return Time to the contact hyperplane for $ N $-degree-of-freedom vibro-impact systems

1. 

Department of Mathematics and Informatics, Thang Long University, Hanoi, Vietnam

2. 

LJAD Mathematics, Inria & CNRS, Université Côte d'Azur, Nice, France

3. 

Department of Mechanical Engineering, McGill University, Montréal, Québec, Canada

* Corresponding author: Stéphane Junca

Received  May 2020 Revised  August 2020 Published  January 2022 Early access  February 2021

The paper deals with the dynamics of conservative $ N $-degree-of-freedom vibro-impact systems involving one unilateral contact condition and a linear free flow. Among all possible trajectories, grazing orbits exhibit a contact occurrence with vanishing incoming velocity which generates mathematical difficulties. Such problems are commonly tackled through the definition of a Poincaré section and the attendant First Return Map. It is known that the First Return Time to the Poincaré section features a square-root singularity near grazing. In this work, a non-orthodox yet natural and intrinsic Poincaré section is chosen to revisit the square-root singularity. It is based on the unilateral condition but is not transverse to the grazing orbits. A detailed investigation of the proposed Poincaré section is provided. Higher-order singularities in the First Return Time are exhibited. Also, activation coefficients of the square-root singularity for the First Return Map are defined. For the linear and periodic grazing orbits from which bifurcate nonlinear modes, one of these coefficients is necessarily non-vanishing. The present work is a step towards the stability analysis of grazing orbits, which still stands as an open problem.

Citation: Huong Le Thi, Stéphane Junca, Mathias Legrand. First Return Time to the contact hyperplane for $ N $-degree-of-freedom vibro-impact systems. Discrete & Continuous Dynamical Systems - B, 2022, 27 (1) : 1-44. doi: 10.3934/dcdsb.2021031
References:
[1]

P. Ballard, The dynamics of discrete mechanical systems with perfect unilateral constraints, Archive for Rational Mechanics and Analysis, 154 (2000), 199-274.  doi: 10.1007/s002050000105.  Google Scholar

[2]

M. di Bernardo, C. Budd, A. Champneys and P. Kowalczyk, Piecewise-Smooth Dynamical Systems: Theory and Applications, Applied Mathematical Sciences, Springer Science & Business Media, London, 2008. Google Scholar

[3]

C. Budd and F. Dux, Intermittency in impact oscillators close to resonance, Nonlinearity, 7 (1994), 1191-1224.  doi: 10.1088/0951-7715/7/4/007.  Google Scholar

[4]

D. Chillingworth, Dynamics of an impact oscillator near a degenerate graze, Nonlinearity, 23 (2010), 2723-2748.  doi: 10.1088/0951-7715/23/11/001.  Google Scholar

[5]

C. Corduneanu, Almost Periodic Functions, Interscience Tracts in Pure and Applied Mathematics, Interscience Publishers, 1968. Google Scholar

[6]

J. M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, 136, American Mathematical Society, 2007. Google Scholar

[7]

M. Fredriksson and A. Nordmark, Bifurcations caused by grazing incidence in many degrees of freedom impact oscillators, Proceedings of the Royal Society, 453 (1997), 1261-1276.  doi: 10.1098/rspa.1997.0069.  Google Scholar

[8]

S. Junca, H. Le Thi, M. Legrand and A. Thorin, Impact dynamics near unilaterally constrained grazing orbits, 9th European Nonlinear Dynamics Conference (ENOC), Budapest, Hungary, (2017), hal-01562154. Google Scholar

[9]

A.-N. Krylov, On the numerical solution of the equation by which, in technical questions, frequencies of small oscillations of material systems are determined, Izvestija AN SSSR (News of Academy of Sciences of the USSR), Otdel. Mat. I Estest. Nauk, VII (1931), 491-539.   Google Scholar

[10]

M. LegrandS. Junca and S. Heng, Nonsmooth modal analysis of a N-degree-of-freedom system undergoing a purely elastic impact law, Commun. Nonlinear Sci. Numer. Simul., 45 (2017), 190-219.  doi: 10.1016/j.cnsns.2016.08.022.  Google Scholar

[11]

H. Le ThiS. Junca and M. Legrand, Periodic solutions of a two-degree-of-freedom autonomous vibro-impact oscillator with sticking phases, Nonlinear Anal. Hybrid Syst., 28 (2018), 54-74.  doi: 10.1016/j.nahs.2017.10.009.  Google Scholar

[12]

J. MolenaarJ. G. de Weger and W. van de Water, Mappings of grazing-impact oscillators, Nonlinearity, 14 (2001), 301-321.  doi: 10.1088/0951-7715/14/2/307.  Google Scholar

[13]

A. Nordmark, Non-periodic motion caused by grazing incidence in an impact oscillator, Journal of Sound and Vibration, 145 (1991), 279-297.  doi: 10.1016/0022-460X(91)90592-8.  Google Scholar

[14]

A. Nordmark, Existence of periodic orbits in grazing bifurcations of impacting mechanical oscillators, Nonlinearity, 14 (2001), 1517-1542.  doi: 10.1088/0951-7715/14/6/306.  Google Scholar

[15]

M. Schatzmann, A class of nonlinear differential equations of second order in time, Nonlinear Analysis: Theory, Methods & Applications, 2 (1978), 355-373.  doi: 10.1016/0362-546X(78)90022-6.  Google Scholar

[16]

J. Sotomayor and M. A. Teixeira, Vector fields near the boundary of a 3-manifold, Dynamical systems Valparaiso 1986, Lecture Notes in Mathematics, 1331 (1988), 169–195. Google Scholar

[17]

A. Thorin, M. Legrand and S. Junca, Nonsmooth modal analysis: Investigation of a 2-dof spring-mass system subject to an elastic impact law, Proceedings of the ASME IDETC & CIEC: 11th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Boston, Massachusetts, 2015, hal-01185973. Google Scholar

[18]

A. Thorin and M. Legrand, Spectrum of an impact oscillator via nonsmooth modal analysis, 9th European Nonlinear Dynamics Conference (ENOC), Budapest, Hungary, 2017, hal-01509382. Google Scholar

[19]

A. ThorinP. Delezoide and M. Legrand, Nonsmooth modal analysis of piecewise-linear impact oscillators, SIAM Journal on Applied Dynamical Systems, 16 (2017), 1710-1747.  doi: 10.1137/16M1081506.  Google Scholar

[20]

A. ThorinP. Delezoide and M. Legrand, Periodic solutions of $n$-dof autonomous vibro-impact oscillators with one lasting contact phase, Nonlinear Dynamics, 90 (2017), 1771-1783.   Google Scholar

[21]

A. Thorin and M. Legrand, Nonsmooth modal analysis: From the discrete to the continuous settings, Advanced topics in nonsmooth dynamics, Springer, Cham, 2018,191–234. Google Scholar

[22]

P. Thota, Analytical and Computational Tools for the Study of Grazing Bifurcations of Periodic Orbits and Invariant Tori, Ph.D thesis, Engineering Sciences [physics], Virginia Polytechnic, Institute and State University, 2007, tel-01330429. Google Scholar

show all references

References:
[1]

P. Ballard, The dynamics of discrete mechanical systems with perfect unilateral constraints, Archive for Rational Mechanics and Analysis, 154 (2000), 199-274.  doi: 10.1007/s002050000105.  Google Scholar

[2]

M. di Bernardo, C. Budd, A. Champneys and P. Kowalczyk, Piecewise-Smooth Dynamical Systems: Theory and Applications, Applied Mathematical Sciences, Springer Science & Business Media, London, 2008. Google Scholar

[3]

C. Budd and F. Dux, Intermittency in impact oscillators close to resonance, Nonlinearity, 7 (1994), 1191-1224.  doi: 10.1088/0951-7715/7/4/007.  Google Scholar

[4]

D. Chillingworth, Dynamics of an impact oscillator near a degenerate graze, Nonlinearity, 23 (2010), 2723-2748.  doi: 10.1088/0951-7715/23/11/001.  Google Scholar

[5]

C. Corduneanu, Almost Periodic Functions, Interscience Tracts in Pure and Applied Mathematics, Interscience Publishers, 1968. Google Scholar

[6]

J. M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, 136, American Mathematical Society, 2007. Google Scholar

[7]

M. Fredriksson and A. Nordmark, Bifurcations caused by grazing incidence in many degrees of freedom impact oscillators, Proceedings of the Royal Society, 453 (1997), 1261-1276.  doi: 10.1098/rspa.1997.0069.  Google Scholar

[8]

S. Junca, H. Le Thi, M. Legrand and A. Thorin, Impact dynamics near unilaterally constrained grazing orbits, 9th European Nonlinear Dynamics Conference (ENOC), Budapest, Hungary, (2017), hal-01562154. Google Scholar

[9]

A.-N. Krylov, On the numerical solution of the equation by which, in technical questions, frequencies of small oscillations of material systems are determined, Izvestija AN SSSR (News of Academy of Sciences of the USSR), Otdel. Mat. I Estest. Nauk, VII (1931), 491-539.   Google Scholar

[10]

M. LegrandS. Junca and S. Heng, Nonsmooth modal analysis of a N-degree-of-freedom system undergoing a purely elastic impact law, Commun. Nonlinear Sci. Numer. Simul., 45 (2017), 190-219.  doi: 10.1016/j.cnsns.2016.08.022.  Google Scholar

[11]

H. Le ThiS. Junca and M. Legrand, Periodic solutions of a two-degree-of-freedom autonomous vibro-impact oscillator with sticking phases, Nonlinear Anal. Hybrid Syst., 28 (2018), 54-74.  doi: 10.1016/j.nahs.2017.10.009.  Google Scholar

[12]

J. MolenaarJ. G. de Weger and W. van de Water, Mappings of grazing-impact oscillators, Nonlinearity, 14 (2001), 301-321.  doi: 10.1088/0951-7715/14/2/307.  Google Scholar

[13]

A. Nordmark, Non-periodic motion caused by grazing incidence in an impact oscillator, Journal of Sound and Vibration, 145 (1991), 279-297.  doi: 10.1016/0022-460X(91)90592-8.  Google Scholar

[14]

A. Nordmark, Existence of periodic orbits in grazing bifurcations of impacting mechanical oscillators, Nonlinearity, 14 (2001), 1517-1542.  doi: 10.1088/0951-7715/14/6/306.  Google Scholar

[15]

M. Schatzmann, A class of nonlinear differential equations of second order in time, Nonlinear Analysis: Theory, Methods & Applications, 2 (1978), 355-373.  doi: 10.1016/0362-546X(78)90022-6.  Google Scholar

[16]

J. Sotomayor and M. A. Teixeira, Vector fields near the boundary of a 3-manifold, Dynamical systems Valparaiso 1986, Lecture Notes in Mathematics, 1331 (1988), 169–195. Google Scholar

[17]

A. Thorin, M. Legrand and S. Junca, Nonsmooth modal analysis: Investigation of a 2-dof spring-mass system subject to an elastic impact law, Proceedings of the ASME IDETC & CIEC: 11th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Boston, Massachusetts, 2015, hal-01185973. Google Scholar

[18]

A. Thorin and M. Legrand, Spectrum of an impact oscillator via nonsmooth modal analysis, 9th European Nonlinear Dynamics Conference (ENOC), Budapest, Hungary, 2017, hal-01509382. Google Scholar

[19]

A. ThorinP. Delezoide and M. Legrand, Nonsmooth modal analysis of piecewise-linear impact oscillators, SIAM Journal on Applied Dynamical Systems, 16 (2017), 1710-1747.  doi: 10.1137/16M1081506.  Google Scholar

[20]

A. ThorinP. Delezoide and M. Legrand, Periodic solutions of $n$-dof autonomous vibro-impact oscillators with one lasting contact phase, Nonlinear Dynamics, 90 (2017), 1771-1783.   Google Scholar

[21]

A. Thorin and M. Legrand, Nonsmooth modal analysis: From the discrete to the continuous settings, Advanced topics in nonsmooth dynamics, Springer, Cham, 2018,191–234. Google Scholar

[22]

P. Thota, Analytical and Computational Tools for the Study of Grazing Bifurcations of Periodic Orbits and Invariant Tori, Ph.D thesis, Engineering Sciences [physics], Virginia Polytechnic, Institute and State University, 2007, tel-01330429. Google Scholar

Figure 1.  A unilaterally constrained $ N $-degree-of-freedom chain with $ d > 0 $
Figure 2.  Possible types of contacts in unilaterally constrained discrete dynamics
Figure 3.  The $ 3D $ Poincaré section for the 2 dof case on $ \{u_2 = d\} $. It consists in the upper part $ \{ \dot{u}_2 >0\} $ and the part $ \{\dot{u}_2 = 0\} $ minus the interval $ ]a,b[ $
Figure 4.  Two branches on the right of the line $ y = y_0 $ when $ \gamma>0 $
Figure 5.  Square-root singularity in dimension $ 3 $. Two graphs of $ x(y,{\bf{z}}) $ are shown in red and blue. The square-root singularity arises along the curve $ y = \alpha({\bf{z}}) $ in purple
Figure 6.  Power-root singularity (1/2, 1/3 and 1/4) in the plane $ (u_1(T_0),\dot{u}_1(T_0)) $ which is isomorphic to the set $ \smash{\mathcal{H}^0} $ since $ u_2(T_0) = d $ and $ \dot{u}_2(T_0) = 0 $. The blue area $ u_1< d $ corresponds to grazing. The red branch $ u_1 = d $ and $ \dot{u}_1>0 $ corresponds to the beginning of a sticking phase. The green area $ u_1> d $ corresponds to states within a sticking phase. The solid green line $ u_1 = d $ and $ \dot{u}_1<0 $ corresponds to the end of a sticking phase. The dark red dot correspond to a unique orbit the worst power-root singularity
11]). A cube-root singularity appears near $ v_1(0) = \dot{u}_1(0) = 5.86 $">Figure 7.  First Return Time $ T $ with respect to $ v_1 = \dot{u}_1 $ (near a periodic solution with one sticking phase per period [11]). A cube-root singularity appears near $ v_1(0) = \dot{u}_1(0) = 5.86 $
Figure 8.  Neighborhood $ D_{\epsilon} $
shows initial iterates in blue to final iterates in red irrespective of the magnitude">Figure 9.  Instability of the fixed-point $ (0,0) $ for the map (104). (a) $ a = 1 $, $ c = 2 $, $ b = d = 0 $: the recurrence goes away from $ (0,0) $ along the line $ y = cx/a $; (b) $ c = \alpha a $, $ d = \alpha b $: the instability does not realize if the starting point sits on the curve $ \mathcal{C}: y = -a\sqrt{|x|}/b $ since the next iterate is $ (0,0) $. (c) $ b = c = 1 $, $ a = d = 0 $: iterates leave $ (0,0) $. The gradient color scale shows initial iterates in blue to final iterates in red irrespective of the magnitude
shows initial iterates in blue to final iterates in red irrespective of the magnitude">Figure 10.  Instability of the fixed-point $ (0,0) $ for the map (104). (a) when $ 0<d = 0.5<1 $ and $ c = 1 $; (b) when $ -1<d = -0.5<0 $ and $ c = 1 $; (c) when $ d = 0 $ and $ c = 1 $. The gradient color scale shows initial iterates in blue to final iterates in red irrespective of the magnitude
Figure 11.  First Return Time (red lines) with respect to the initial displacement of the first mass: (a) near the first GLM, (b) near the second GLM
Figure 12.  Simple unilaterally constrained one-dof system
Figure 13.  One-dof system orbit
[1]

Hongwei Lou, Junjie Wen, Yashan Xu. Time optimal control problems for some non-smooth systems. Mathematical Control & Related Fields, 2014, 4 (3) : 289-314. doi: 10.3934/mcrf.2014.4.289

[2]

Philippe Pécol, Pierre Argoul, Stefano Dal Pont, Silvano Erlicher. The non-smooth view for contact dynamics by Michel Frémond extended to the modeling of crowd movements. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 547-565. doi: 10.3934/dcdss.2013.6.547

[3]

Paul Glendinning. Non-smooth pitchfork bifurcations. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 457-464. doi: 10.3934/dcdsb.2004.4.457

[4]

Xiaoshan Chen, Xun Li, Fahuai Yi. Optimal stopping investment with non-smooth utility over an infinite time horizon. Journal of Industrial & Management Optimization, 2019, 15 (1) : 81-96. doi: 10.3934/jimo.2018033

[5]

Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021073

[6]

Luis Bayón, Jose Maria Grau, Maria del Mar Ruiz, Pedro Maria Suárez. A hydrothermal problem with non-smooth Lagrangian. Journal of Industrial & Management Optimization, 2014, 10 (3) : 761-776. doi: 10.3934/jimo.2014.10.761

[7]

Giuseppe Tomassetti. Smooth and non-smooth regularizations of the nonlinear diffusion equation. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1519-1537. doi: 10.3934/dcdss.2017078

[8]

Nurullah Yilmaz, Ahmet Sahiner. On a new smoothing technique for non-smooth, non-convex optimization. Numerical Algebra, Control & Optimization, 2020, 10 (3) : 317-330. doi: 10.3934/naco.2020004

[9]

Nicola Gigli, Sunra Mosconi. The Abresch-Gromoll inequality in a non-smooth setting. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1481-1509. doi: 10.3934/dcds.2014.34.1481

[10]

Yanni Xiao, Tingting Zhao, Sanyi Tang. Dynamics of an infectious diseases with media/psychology induced non-smooth incidence. Mathematical Biosciences & Engineering, 2013, 10 (2) : 445-461. doi: 10.3934/mbe.2013.10.445

[11]

Deepak Singh, Bilal Ahmad Dar, Do Sang Kim. Sufficiency and duality in non-smooth interval valued programming problems. Journal of Industrial & Management Optimization, 2019, 15 (2) : 647-665. doi: 10.3934/jimo.2018063

[12]

Constantin Christof, Christian Meyer, Stephan Walther, Christian Clason. Optimal control of a non-smooth semilinear elliptic equation. Mathematical Control & Related Fields, 2018, 8 (1) : 247-276. doi: 10.3934/mcrf.2018011

[13]

Salvatore A. Marano, Sunra Mosconi. Non-smooth critical point theory on closed convex sets. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1187-1202. doi: 10.3934/cpaa.2014.13.1187

[14]

Jianhua Huang, Wenxian Shen. Pullback attractors for nonautonomous and random parabolic equations on non-smooth domains. Discrete & Continuous Dynamical Systems, 2009, 24 (3) : 855-882. doi: 10.3934/dcds.2009.24.855

[15]

Michael Goldberg. Strichartz estimates for Schrödinger operators with a non-smooth magnetic potential. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 109-118. doi: 10.3934/dcds.2011.31.109

[16]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2021, 11 (3) : 521-554. doi: 10.3934/mcrf.2020052

[17]

Nelly Point, Silvano Erlicher. Pseudo-potentials and bipotential: A constructive procedure for non-associated plasticity and unilateral contact. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 567-590. doi: 10.3934/dcdss.2013.6.567

[18]

Nurullah Yilmaz, Ahmet Sahiner. Generalization of hyperbolic smoothing approach for non-smooth and non-Lipschitz functions. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021170

[19]

Andaluzia Matei, Mircea Sofonea. Dual formulation of a viscoplastic contact problem with unilateral constraint. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1587-1598. doi: 10.3934/dcdss.2013.6.1587

[20]

Chao Zhang, Lihe Wang, Shulin Zhou, Yun-Ho Kim. Global gradient estimates for $p(x)$-Laplace equation in non-smooth domains. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2559-2587. doi: 10.3934/cpaa.2014.13.2559

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (203)
  • HTML views (378)
  • Cited by (0)

Other articles
by authors

[Back to Top]