January  2022, 27(1): 141-165. doi: 10.3934/dcdsb.2021035

Monotonic and nonmonotonic immune responses in viral infection systems

1. 

School of Mathematics and Statistics, Bioinformatics Center of Henan University, Kaifeng 475001, Henan, China

2. 

Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, Jiangsu, China

3. 

Department of Mathematics, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada

* Corresponding author: Shaoli Wang

Received  September 2019 Revised  November 2020 Published  January 2022 Early access  January 2021

Fund Project: This work is supported by Science and Foundation of Technology Department of Henan Province (No.192102310089), Foundation of Henan Educational Committee (No.19A110009), Natural Science Foundation of Henan (No. 202300410045) and Grant of Bioinformatics Center of Henan University (No. 2019YLXKJC02)

In this paper, we study two-dimensional, three-dimensional monotonic and nonmonotonic immune responses in viral infection systems. Our results show that the viral infection systems with monotonic immune response has no bistability appear. However, the systems with nonmonotonic immune response has bistability appear under some conditions. For immune intensity, we got two important thresholds, post-treatment control threshold and elite control threshold. When immune intensity is less than post-treatment control threshold, the virus will be rebound. The virus will be under control when immune intensity is larger than elite control threshold. While between the two thresholds is a bistable interval. When immune intensity is in the bistable interval, the system can have bistability appear. Select the rate of immune cells stimulated by the viruses as a bifurcation parameter for nonmonotonic immune responses, we prove that the system exhibits saddle-node bifurcation and transcritical bifurcation.

Citation: Shaoli Wang, Huixia Li, Fei Xu. Monotonic and nonmonotonic immune responses in viral infection systems. Discrete & Continuous Dynamical Systems - B, 2022, 27 (1) : 141-165. doi: 10.3934/dcdsb.2021035
References:
[1]

J. F. Andrews, A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates, Biotechnol. Bioeng., 10 (1968), 707-723.  doi: 10.1002/bit.260100602.  Google Scholar

[2]

C. BartholdyJ. P. ChristensenD. Wodarz and A. R. Thomsen, Persistent virus infection despite chronic cytotoxic T-lymphocyte activation in Gamma interferon-deficient mice infected with lymphocytic chroriomeningitis virus, J. Virol., 74 (2000), 10304-10311.  doi: 10.1128/JVI.74.22.10304-10311.2000.  Google Scholar

[3]

S. BonhoefferR. M. MayG. M. Shaw and M. A. Nowak, Virus dynamics and drug therapy, Proc. Natl. Acad. Sci. USA, 94 (1997), 6971-6976.  doi: 10.1073/pnas.94.13.6971.  Google Scholar

[4]

S. BonhoefferM. RembiszewskiG. M. Ortiz and D. Nixon, Risks and benefits of structured antiretroviral drug therapy interruptions in HIV-1 infection, AIDS, 14 (2000), 2313-2322.  doi: 10.1097/00002030-200010200-00012.  Google Scholar

[5]

J. M. Conway and A. S. Perelson, Post-treatment control of HIV infection, Proc. Natl. Acad. Sci. USA, 112 (2015), 5467-5472.  doi: 10.1073/pnas.1419162112.  Google Scholar

[6]

R. CulshawS. Ruan and R. J. Spiteri, Optimal HIV treatment by maximising immune response, J. Math. Biol., 48 (2004), 545-562.  doi: 10.1007/s00285-003-0245-3.  Google Scholar

[7]

S. DebroyB. M. Bolker and M. Martcheva, Bistability and long-term cure in a within-host model of hepatitis C, J. Biol. Systems, 19 (2011), 533-550.  doi: 10.1142/S0218339011004135.  Google Scholar

[8]

M. Haque, Ratio-dependent predator-prey models of interacting populations, Bull. Math. Biol., 71 (2009), 430-452.  doi: 10.1007/s11538-008-9368-4.  Google Scholar

[9]

A. V. M. HerzS. Bonhoeffer and R. M. Anderson, Viral dynamics in vivo: Limitations on estimates of intracellular delay and virus decay, Proc. Natl. Acad. Sci. USA, 93 (1996), 7247-7251.  doi: 10.1073/pnas.93.14.7247.  Google Scholar

[10]

J. Huang and D. Dong, Analyses of bifurcations and stability in a predator-prey system with Holling Type-IV functional response, Acta Math. Appl. Sin. Engl. Ser., 20 (2004), 167-178.  doi: 10.1007/s10255-004-0159-x.  Google Scholar

[11]

Y. IwasaF. Michor and M. Nowak, Some basic properties of immune selection, J. Theoret. Biol., 229 (2004), 179-188.  doi: 10.1016/j.jtbi.2004.03.013.  Google Scholar

[12]

H. K. Khalil, Nonlinear System, Prentice-Hall, 1996. Google Scholar

[13]

A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol., 66 (2004), 879-883.  doi: 10.1016/j.bulm.2004.02.001.  Google Scholar

[14]

J. P. La Salle, The Stability of Dynamical Systems, SIAM, Philadelphia, 1976.  Google Scholar

[15]

P. D. Leenheer and H. L. Smith, Virus dynamics: A global analysis, SIAM J. Appl. Math., 63 (2003), 1313-1327.  doi: 10.1137/S0036139902406905.  Google Scholar

[16]

F. Li, W. Ma, Z. Jiang and D Li, Stability and Hopf bifurcation in a delayed HIV infection model with general incidence rate and immune impairment, Comput. Math. Methods Med., 2015 (2015), 206205. doi: 10.1155/2015/206205.  Google Scholar

[17]

W. Liu, Nonlinear oscillations in models of immune responses to persistent viruses, Theoret. Population Biol., 52 (1997), 224-230.  doi: 10.1006/tpbi.1997.1334.  Google Scholar

[18]

M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74-79.  doi: 10.1126/science.272.5258.74.  Google Scholar

[19]

M. A. NowakS. BonhoefferA. M. HillR. BoehmeH. C. Thomas and H. McDade, Viral dynamics in hepatitis B virus infection, Proc. Natl. Acad. Sci. USA, 93 (1996), 4398-4402.  doi: 10.1073/pnas.93.9.4398.  Google Scholar

[20]

L. Perko, Differential Equation and Dynamical System, Speinger-Verlag, New York, 7 2001. doi: 10.1007/978-1-4613-0003-8.  Google Scholar

[21]

R. R. RegoesD. Wodarz and M. A. Nowak, Virus dynamics: The effect of target cell limitation and immune responses on virus evolution, J. Theoret. Biol., 191 (1998), 451-462.  doi: 10.1006/jtbi.1997.0617.  Google Scholar

[22]

F. Rothe and D. S. Shafer, Multiple bifurcation in a predator-prey system with non-monotonic predator response, Proc. Roy. Soc. Edinburgh Sect. A, 120 (1992), 313-347.  doi: 10.1017/S0308210500032169.  Google Scholar

[23]

S. Ruan and D. Xiao, Global analysis in a predator-prey system with nonmonotonic function response, SIAM. J. Appl. Math., 61 (2000/01), 1445-1472.  doi: 10.1137/S0036139999361896.  Google Scholar

[24]

W. Sokol and J. A. Howell, Kinetics of phenol oxidation by washed cells, Biotechnol. Bioeng., 23 (1980), 2039-2049.  doi: 10.1002/bit.260230909.  Google Scholar

[25]

J. Sotomayor, Generic bifurcation of dynamical system, Dynam. Syst., Academic Press, New York, 1973,561–582.  Google Scholar

[26]

K. WangY. Jin and A. Fan, The effect of immune responses in viral infections: A mathematical model view, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 3379-3396.  doi: 10.3934/dcdsb.2014.19.3379.  Google Scholar

[27]

K. Wang and Y. Kuang, Fluctuation and extinction dynamics in host-microparasite systems, Commun. Pure Appl. Anal., 10 (2011), 1537-1548.  doi: 10.3934/cpaa.2011.10.1537.  Google Scholar

[28]

Z. Wang and X. Liu, A chronic viral infection model with immune impairment, J. Theoret. Biol., 249 (2007), 532-542.  doi: 10.1016/j.jtbi.2007.08.017.  Google Scholar

[29]

K. WangZ. Qiu and G. Deng, Study on a population dynamic model of virus infection, J. Systems Sci. Math. Sci., 23 (2003), 433-443.   Google Scholar

[30]

S. Wang and F. Xu, Analysis of an HIV model with post-treatment control, J. Appl. Anal. Comput., 10 (2020), 667-685.  doi: 10.11948/20190081.  Google Scholar

[31]

S. Wang and F. Xu, Thresholds and bistability in virus-immune dynamics, Appl. Math. Lett., 78 (2018), 105-111.  doi: 10.1016/j.aml.2017.11.002.  Google Scholar

[32]

S. Wang, F. Xu and L. Rong, Bistability analysis of an HIV model with immune response, J. Biol. Systems, Vol 25 (2017), 677–695. doi: 10.1142/S021833901740006X.  Google Scholar

[33]

S. Wang, F. Xu and X. Song, Threshold and bistability in HIV infection models with oxidative stress, arXiv: 1808.02276 (2018). Google Scholar

[34]

D. WodarzJ. P. Christensen and A. R. Thomsen, The importance of lytic and nonlytie immune responses in viral infections, Trends Immunol., 23 (2002), 194-200.  doi: 10.1016/S1471-4906(02)02189-0.  Google Scholar

[35]

D. Wodarz, Hepatitis C virus dynamics and pathology: The role of CTL and antibody responses, J. Gen. Virol., 84 (2003), 1743-1750.  doi: 10.1099/vir.0.19118-0.  Google Scholar

show all references

References:
[1]

J. F. Andrews, A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates, Biotechnol. Bioeng., 10 (1968), 707-723.  doi: 10.1002/bit.260100602.  Google Scholar

[2]

C. BartholdyJ. P. ChristensenD. Wodarz and A. R. Thomsen, Persistent virus infection despite chronic cytotoxic T-lymphocyte activation in Gamma interferon-deficient mice infected with lymphocytic chroriomeningitis virus, J. Virol., 74 (2000), 10304-10311.  doi: 10.1128/JVI.74.22.10304-10311.2000.  Google Scholar

[3]

S. BonhoefferR. M. MayG. M. Shaw and M. A. Nowak, Virus dynamics and drug therapy, Proc. Natl. Acad. Sci. USA, 94 (1997), 6971-6976.  doi: 10.1073/pnas.94.13.6971.  Google Scholar

[4]

S. BonhoefferM. RembiszewskiG. M. Ortiz and D. Nixon, Risks and benefits of structured antiretroviral drug therapy interruptions in HIV-1 infection, AIDS, 14 (2000), 2313-2322.  doi: 10.1097/00002030-200010200-00012.  Google Scholar

[5]

J. M. Conway and A. S. Perelson, Post-treatment control of HIV infection, Proc. Natl. Acad. Sci. USA, 112 (2015), 5467-5472.  doi: 10.1073/pnas.1419162112.  Google Scholar

[6]

R. CulshawS. Ruan and R. J. Spiteri, Optimal HIV treatment by maximising immune response, J. Math. Biol., 48 (2004), 545-562.  doi: 10.1007/s00285-003-0245-3.  Google Scholar

[7]

S. DebroyB. M. Bolker and M. Martcheva, Bistability and long-term cure in a within-host model of hepatitis C, J. Biol. Systems, 19 (2011), 533-550.  doi: 10.1142/S0218339011004135.  Google Scholar

[8]

M. Haque, Ratio-dependent predator-prey models of interacting populations, Bull. Math. Biol., 71 (2009), 430-452.  doi: 10.1007/s11538-008-9368-4.  Google Scholar

[9]

A. V. M. HerzS. Bonhoeffer and R. M. Anderson, Viral dynamics in vivo: Limitations on estimates of intracellular delay and virus decay, Proc. Natl. Acad. Sci. USA, 93 (1996), 7247-7251.  doi: 10.1073/pnas.93.14.7247.  Google Scholar

[10]

J. Huang and D. Dong, Analyses of bifurcations and stability in a predator-prey system with Holling Type-IV functional response, Acta Math. Appl. Sin. Engl. Ser., 20 (2004), 167-178.  doi: 10.1007/s10255-004-0159-x.  Google Scholar

[11]

Y. IwasaF. Michor and M. Nowak, Some basic properties of immune selection, J. Theoret. Biol., 229 (2004), 179-188.  doi: 10.1016/j.jtbi.2004.03.013.  Google Scholar

[12]

H. K. Khalil, Nonlinear System, Prentice-Hall, 1996. Google Scholar

[13]

A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol., 66 (2004), 879-883.  doi: 10.1016/j.bulm.2004.02.001.  Google Scholar

[14]

J. P. La Salle, The Stability of Dynamical Systems, SIAM, Philadelphia, 1976.  Google Scholar

[15]

P. D. Leenheer and H. L. Smith, Virus dynamics: A global analysis, SIAM J. Appl. Math., 63 (2003), 1313-1327.  doi: 10.1137/S0036139902406905.  Google Scholar

[16]

F. Li, W. Ma, Z. Jiang and D Li, Stability and Hopf bifurcation in a delayed HIV infection model with general incidence rate and immune impairment, Comput. Math. Methods Med., 2015 (2015), 206205. doi: 10.1155/2015/206205.  Google Scholar

[17]

W. Liu, Nonlinear oscillations in models of immune responses to persistent viruses, Theoret. Population Biol., 52 (1997), 224-230.  doi: 10.1006/tpbi.1997.1334.  Google Scholar

[18]

M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74-79.  doi: 10.1126/science.272.5258.74.  Google Scholar

[19]

M. A. NowakS. BonhoefferA. M. HillR. BoehmeH. C. Thomas and H. McDade, Viral dynamics in hepatitis B virus infection, Proc. Natl. Acad. Sci. USA, 93 (1996), 4398-4402.  doi: 10.1073/pnas.93.9.4398.  Google Scholar

[20]

L. Perko, Differential Equation and Dynamical System, Speinger-Verlag, New York, 7 2001. doi: 10.1007/978-1-4613-0003-8.  Google Scholar

[21]

R. R. RegoesD. Wodarz and M. A. Nowak, Virus dynamics: The effect of target cell limitation and immune responses on virus evolution, J. Theoret. Biol., 191 (1998), 451-462.  doi: 10.1006/jtbi.1997.0617.  Google Scholar

[22]

F. Rothe and D. S. Shafer, Multiple bifurcation in a predator-prey system with non-monotonic predator response, Proc. Roy. Soc. Edinburgh Sect. A, 120 (1992), 313-347.  doi: 10.1017/S0308210500032169.  Google Scholar

[23]

S. Ruan and D. Xiao, Global analysis in a predator-prey system with nonmonotonic function response, SIAM. J. Appl. Math., 61 (2000/01), 1445-1472.  doi: 10.1137/S0036139999361896.  Google Scholar

[24]

W. Sokol and J. A. Howell, Kinetics of phenol oxidation by washed cells, Biotechnol. Bioeng., 23 (1980), 2039-2049.  doi: 10.1002/bit.260230909.  Google Scholar

[25]

J. Sotomayor, Generic bifurcation of dynamical system, Dynam. Syst., Academic Press, New York, 1973,561–582.  Google Scholar

[26]

K. WangY. Jin and A. Fan, The effect of immune responses in viral infections: A mathematical model view, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 3379-3396.  doi: 10.3934/dcdsb.2014.19.3379.  Google Scholar

[27]

K. Wang and Y. Kuang, Fluctuation and extinction dynamics in host-microparasite systems, Commun. Pure Appl. Anal., 10 (2011), 1537-1548.  doi: 10.3934/cpaa.2011.10.1537.  Google Scholar

[28]

Z. Wang and X. Liu, A chronic viral infection model with immune impairment, J. Theoret. Biol., 249 (2007), 532-542.  doi: 10.1016/j.jtbi.2007.08.017.  Google Scholar

[29]

K. WangZ. Qiu and G. Deng, Study on a population dynamic model of virus infection, J. Systems Sci. Math. Sci., 23 (2003), 433-443.   Google Scholar

[30]

S. Wang and F. Xu, Analysis of an HIV model with post-treatment control, J. Appl. Anal. Comput., 10 (2020), 667-685.  doi: 10.11948/20190081.  Google Scholar

[31]

S. Wang and F. Xu, Thresholds and bistability in virus-immune dynamics, Appl. Math. Lett., 78 (2018), 105-111.  doi: 10.1016/j.aml.2017.11.002.  Google Scholar

[32]

S. Wang, F. Xu and L. Rong, Bistability analysis of an HIV model with immune response, J. Biol. Systems, Vol 25 (2017), 677–695. doi: 10.1142/S021833901740006X.  Google Scholar

[33]

S. Wang, F. Xu and X. Song, Threshold and bistability in HIV infection models with oxidative stress, arXiv: 1808.02276 (2018). Google Scholar

[34]

D. WodarzJ. P. Christensen and A. R. Thomsen, The importance of lytic and nonlytie immune responses in viral infections, Trends Immunol., 23 (2002), 194-200.  doi: 10.1016/S1471-4906(02)02189-0.  Google Scholar

[35]

D. Wodarz, Hepatitis C virus dynamics and pathology: The role of CTL and antibody responses, J. Gen. Virol., 84 (2003), 1743-1750.  doi: 10.1099/vir.0.19118-0.  Google Scholar

Figure 1.  Bifurcation diagram of system (3). The solid line represents the stable equilibrium of infected CD4+ T cells and the dashed line represents the unstable equilibrium of infected CD4+ T cells. The post-treatment control threshold is $ c_{2} = 0.2500 $, the elite control threshold is $ c^{**}_1\approx0.6505 $ and the bistable interval is $ (0.2500, 0.6505). $ Here, $ c = 0.37\; \; \mbox{day}^{-1} $ and the values of other parameters are listed in (4)
Figure 2.  Time histories and trajectories of system (3) with different initial conditions. The system has a stable equilibria $ E^{(2)}_{1} $. Here, $ c = 0.2\; \; \mbox{day}^{-1} $ is less than the post-treatment control threshold $ P_I $ and other parameter values are listed in (4)
Figure 3.  Time histories and trajectories of system (3) with different initial conditions. Here, system (3) has two different stable equilibria $ E^{(2)}_{1} $ and $ E_{-}^{2*} $ with $ c = 0.37\; \; \mbox{day}^{-1} $. Other parameter values are listed in (4)
Figure 4.  Time histories and trajectories of system (3) with different initial conditions. System (3) only has the positive equilibrium $ E_{-}^{2*} $, which is stable with $ c = 0.65\; \; \mbox{day}^{-1} $. Other parameter values are listed in (4)
Figure 5.  Bifurcation diagram of system (6). The solid line is the stable equilibrium and the dashed line denotes the unstable equilibrium. The post-treatment control threshold is $ c_{2} = 2.5000 $, the elite control threshold is $ c^{**}_2\approx3.5278 $ and the bistable interval is $ (2.5000, 3.5278). $ Here, $ c = 3\; \; \mbox{day}^{-1} $ and other parameter values are listed in (7)
Figure 6.  Time histories and phase portraits of system (6). System (6) has two different stable equilibria $ E^{(4)}_{1} $ and $ E_{*}^{4-} $. Here, $ c = 3\; \; \mbox{day}^{-1} $ and other parameter values are listed in (7). We choose different initial values
Figure 7.  Phase portraits of system (6). (A) Choosing $ c = 2\; \; \mbox{day}^{-1} $, which is less than the post-treatment control threshold $ c_{2} = 2.5000 $, system (6) only has a stable equilibrium $ E^{(4)}_{1} $; (B) Choosing $ c = 4\; \; \mbox{day}^{-1} $, which is greater than the elite control threshold $ c^{**}_2\approx3.5278 $, system (6) only has the stable equilibria $ E_{*}^{4-} $. Other parameter values are listed in (7)
Table 1.  The stabilities of the equilibria and the behaviors of system (3) in the case $ 1<\mathcal {R}^{(2)}_{0}<\mathcal {R}^{(1)}_{c} $
$ E^{(2)}_{0} $ $ E^{(2)}_{1} $ $ E_{*}^{2-} $ $ E_{*}^{2+} $ System (3)
$ R^{(2)}_{0}<1 $ GAS Converges to $ E^{(2)}_{0} $
$ 1<R^{(2)}_{0}<R^{(1)}_{c}, $ $ 0<c<c^{**}_1 $ US LAS Converges to $ E^{(2)}_{1} $
$ 1<R^{(2)}_{0}<R^{(1)}_{c}, $ $ c^{**}_1<c $ US US LAS Converges to $ E_{*}^{2-} $
$ E^{(2)}_{0} $ $ E^{(2)}_{1} $ $ E_{*}^{2-} $ $ E_{*}^{2+} $ System (3)
$ R^{(2)}_{0}<1 $ GAS Converges to $ E^{(2)}_{0} $
$ 1<R^{(2)}_{0}<R^{(1)}_{c}, $ $ 0<c<c^{**}_1 $ US LAS Converges to $ E^{(2)}_{1} $
$ 1<R^{(2)}_{0}<R^{(1)}_{c}, $ $ c^{**}_1<c $ US US LAS Converges to $ E_{*}^{2-} $
Table 2.  The stabilities of the equilibria and the behaviors of system (3) in the case $ \mathcal {R}^{(2)}_{0}>\mathcal {R}^{(1)}_{c} $
$ E^{(2)}_{0} $ $ E^{(2)}_{1} $ $ E_{*}^{2-} $ $ E_{*}^{2+} $ System (3)
$ R^{(2)}_{0}<1 $ GAS Converges to $ E^{(2)}_{0} $
$ R^{(2)}_{0}>1 $, $ 0<c<c_{2} $ US LAS Converges to $ E^{(2)}_{1} $
$ R^{(2)}_{0}>R^{(1)}_{c}>1, $ $ c_{2}<c<c^{**}_1 $ US LAS LAS US Bistable
$ R^{(2)}_{0}>R^{(1)}_{c}>1, $ $ c>c^{**}_1 $ US US LAS Converges to $ E_{*}^{2-} $
$ E^{(2)}_{0} $ $ E^{(2)}_{1} $ $ E_{*}^{2-} $ $ E_{*}^{2+} $ System (3)
$ R^{(2)}_{0}<1 $ GAS Converges to $ E^{(2)}_{0} $
$ R^{(2)}_{0}>1 $, $ 0<c<c_{2} $ US LAS Converges to $ E^{(2)}_{1} $
$ R^{(2)}_{0}>R^{(1)}_{c}>1, $ $ c_{2}<c<c^{**}_1 $ US LAS LAS US Bistable
$ R^{(2)}_{0}>R^{(1)}_{c}>1, $ $ c>c^{**}_1 $ US US LAS Converges to $ E_{*}^{2-} $
Table 3.  The stabilities of the equilibria and the behaviors of system (6) in the case $ 1<\mathcal {R}^{(4)}_{0}<\mathcal {R}^{(2)}_{c} $
$ E^{(4)}_{0} $ $ E^{(4)}_{1} $ $ E_{*}^{4-} $ $ E_{*}^{4+} $ System (6)
$ R^{(4)}_{0}<1 $ GAS Converges to $ E^{(4)}_{0} $
$ 1<R^{(4)}_{0}<R^{(2)}_{c}, $ $ 0<c<c^{**}_2 $ US GAS Converges to $ E^{(4)}_{1} $
$ 1<R^{(4)}_{0}<R^{(2)}_{c}, $ $ c^{**}_2<c $ US US GAS Converges to $ E_{*}^{4-} $
$ E^{(4)}_{0} $ $ E^{(4)}_{1} $ $ E_{*}^{4-} $ $ E_{*}^{4+} $ System (6)
$ R^{(4)}_{0}<1 $ GAS Converges to $ E^{(4)}_{0} $
$ 1<R^{(4)}_{0}<R^{(2)}_{c}, $ $ 0<c<c^{**}_2 $ US GAS Converges to $ E^{(4)}_{1} $
$ 1<R^{(4)}_{0}<R^{(2)}_{c}, $ $ c^{**}_2<c $ US US GAS Converges to $ E_{*}^{4-} $
Table 4.  The stabilities of the equilibria and the behaviors of system (6) in the case $ \mathcal {R}^{(4)}_{0}>\mathcal {R}^{(2)}_{c} $
$ E^{(4)}_{0} $ $ E^{(4)}_{1} $ $ E_{*}^{4-} $ $ E_{*}^{4+} $ System (6)
$ R^{(4)}_{0}<1 $ GAS Converges to $ E^{(4)}_{0} $
$ R^{(4)}_{0}>1 $, $ 0<c<c_{2} $ US GAS Converges to $ E^{(4)}_{1} $
$ R^{(4)}_{0}>R^{(2)}_{c}>1, $ $ c_{2}<c<c^{**}_2 $ US GAS GAS US Bistable
$ R^{(4)}_{0}>R^{(2)}_{c}>1, $ $ c>c^{**}_2 $ US US GAS Converges to $ E_{*}^{4-} $
$ E^{(4)}_{0} $ $ E^{(4)}_{1} $ $ E_{*}^{4-} $ $ E_{*}^{4+} $ System (6)
$ R^{(4)}_{0}<1 $ GAS Converges to $ E^{(4)}_{0} $
$ R^{(4)}_{0}>1 $, $ 0<c<c_{2} $ US GAS Converges to $ E^{(4)}_{1} $
$ R^{(4)}_{0}>R^{(2)}_{c}>1, $ $ c_{2}<c<c^{**}_2 $ US GAS GAS US Bistable
$ R^{(4)}_{0}>R^{(2)}_{c}>1, $ $ c>c^{**}_2 $ US US GAS Converges to $ E_{*}^{4-} $
[1]

Rui Dilão, András Volford. Excitability in a model with a saddle-node homoclinic bifurcation. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 419-434. doi: 10.3934/dcdsb.2004.4.419

[2]

Ping Liu, Junping Shi, Yuwen Wang. A double saddle-node bifurcation theorem. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2923-2933. doi: 10.3934/cpaa.2013.12.2923

[3]

Kie Van Ivanky Saputra, Lennaert van Veen, Gilles Reinout Willem Quispel. The saddle-node-transcritical bifurcation in a population model with constant rate harvesting. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 233-250. doi: 10.3934/dcdsb.2010.14.233

[4]

Flaviano Battelli. Saddle-node bifurcation of homoclinic orbits in singular systems. Discrete & Continuous Dynamical Systems, 2001, 7 (1) : 203-218. doi: 10.3934/dcds.2001.7.203

[5]

Xianjun Wang, Huaguang Gu, Bo Lu. Big homoclinic orbit bifurcation underlying post-inhibitory rebound spike and a novel threshold curve of a neuron. Electronic Research Archive, 2021, 29 (5) : 2987-3015. doi: 10.3934/era.2021023

[6]

Alain Rapaport, Jérôme Harmand. Biological control of the chemostat with nonmonotonic response and different removal rates. Mathematical Biosciences & Engineering, 2008, 5 (3) : 539-547. doi: 10.3934/mbe.2008.5.539

[7]

Sumei Li, Yicang Zhou. Backward bifurcation of an HTLV-I model with immune response. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 863-881. doi: 10.3934/dcdsb.2016.21.863

[8]

Victoriano Carmona, Soledad Fernández-García, Antonio E. Teruel. Saddle-node of limit cycles in planar piecewise linear systems and applications. Discrete & Continuous Dynamical Systems, 2019, 39 (9) : 5275-5299. doi: 10.3934/dcds.2019215

[9]

Ale Jan Homburg, Todd Young. Intermittency and Jakobson's theorem near saddle-node bifurcations. Discrete & Continuous Dynamical Systems, 2007, 17 (1) : 21-58. doi: 10.3934/dcds.2007.17.21

[10]

W.-J. Beyn, Y.-K Zou. Discretizations of dynamical systems with a saddle-node homoclinic orbit. Discrete & Continuous Dynamical Systems, 1996, 2 (3) : 351-365. doi: 10.3934/dcds.1996.2.351

[11]

Xiao-Biao Lin, Changrong Zhu. Saddle-node bifurcations of multiple homoclinic solutions in ODES. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1435-1460. doi: 10.3934/dcdsb.2017069

[12]

Urszula Ledzewicz, Mohammad Naghnaeian, Heinz Schättler. Dynamics of tumor-immune interaction under treatment as an optimal control problem. Conference Publications, 2011, 2011 (Special) : 971-980. doi: 10.3934/proc.2011.2011.971

[13]

Yuan Zhao, Shunfu Jin, Wuyi Yue. Adjustable admission control with threshold in centralized CR networks: Analysis and optimization. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1393-1408. doi: 10.3934/jimo.2015.11.1393

[14]

Gang Chen, Zaiming Liu, Jinbiao Wu. Optimal threshold control of a retrial queueing system with finite buffer. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1537-1552. doi: 10.3934/jimo.2017006

[15]

Jinhu Xu, Yicang Zhou. Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay. Mathematical Biosciences & Engineering, 2016, 13 (2) : 343-367. doi: 10.3934/mbe.2015006

[16]

Majid Gazor, Mojtaba Moazeni. Parametric normal forms for Bogdanov--Takens singularity; the generalized saddle-node case. Discrete & Continuous Dynamical Systems, 2015, 35 (1) : 205-224. doi: 10.3934/dcds.2015.35.205

[17]

Fatihcan M. Atay. Delayed feedback control near Hopf bifurcation. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 197-205. doi: 10.3934/dcdss.2008.1.197

[18]

Gunog Seo, Gail S. K. Wolkowicz. Pest control by generalist parasitoids: A bifurcation theory approach. Discrete & Continuous Dynamical Systems - S, 2020, 13 (11) : 3157-3187. doi: 10.3934/dcdss.2020163

[19]

Russell Johnson, Francesca Mantellini. A nonautonomous transcritical bifurcation problem with an application to quasi-periodic bubbles. Discrete & Continuous Dynamical Systems, 2003, 9 (1) : 209-224. doi: 10.3934/dcds.2003.9.209

[20]

Mudassar Imran, Hal L. Smith. The dynamics of bacterial infection, innate immune response, and antibiotic treatment. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 127-143. doi: 10.3934/dcdsb.2007.8.127

2020 Impact Factor: 1.327

Article outline

Figures and Tables

[Back to Top]