• Previous Article
    Trajectory statistical solutions for the Cahn-Hilliard-Navier-Stokes system with moving contact lines
  • DCDS-B Home
  • This Issue
  • Next Article
    Continuous dependence of the Cauchy problem for the inhomogeneous nonlinear Schrödinger equation in $H^{s} (\mathbb R^{n})$
doi: 10.3934/dcdsb.2021077
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Dynamics of consumer-resource systems with consumer's dispersal between patches

School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China

Received  August 2020 Revised  December 2020 Early access March 2021

Fund Project: The second author is supported by NSF grant of China (12071495, 11571382)

This paper considers consumer-resource systems with Holling II functional response. In the system, the consumer can move between a source and a sink patch. By applying dynamical systems theory, we give a rigorous analysis on persistence of the system. Then we show local/global stability of equilibria and prove Hopf bifurcation by the Kuznetsov Theorem. It is shown that dispersal in the system could lead to results reversing those without dispersal. Varying a dispersal rate can change species' interaction outcomes from coexistence in periodic oscillation, to persistence at a steady state, to extinction of the predator, and even to extinction of both species. By explicit expressions of stable equilibria, we prove that dispersal can make the consumer reach overall abundance larger than if non-dispersing, and there exists an optimal dispersal rate that maximizes the abundance. Asymmetry in dispersal can also lead to those results. It is proven that the overall abundance is a ridge-like function (surface) of dispersal rates, which extends both previous theory and experimental observation. These results are biologically important in protecting endangered species.

Citation: Kun Hu, Yuanshi Wang. Dynamics of consumer-resource systems with consumer's dispersal between patches. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021077
References:
[1]

R. ArditiC. Lobry and T. Sari, Is dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation, Theor. Popul. Biol., 106 (2015), 45-59.   Google Scholar

[2]

R. ArditiC. Lobry and T. Sari, Asymmetric dispersal in the multi-patch logistic equation, Theor. Popul. Biol., 120 (2018), 11-15.   Google Scholar

[3]

J. Astr$\ddot{o}$m and T. P$\ddot{a}$rt, Negative and matrix-dependent effects of dispersal corridors in an experimental metacommunity., Ecology, 94 2013), 1939-1970. Google Scholar

[4]

G. ButlerH. I. Freedman and P. Waltman, Uniformly persistent systems, Proc. Amer. Math. Soc., 96 (1986), 425-430.  doi: 10.1090/S0002-9939-1986-0822433-4.  Google Scholar

[5]

L. Fahrig, Effect of habitat fragmentation on the extinction threshold: A synthesis, Ecol. Appl., 12 (2002), 346-353.   Google Scholar

[6]

W. FengB. Rock and J. Hinson, On a new model of two-patch predator-prey system with migration of both species, J. Appl. Anal. Comput., 1 (2011), 193-203.  doi: 10.11948/2011013.  Google Scholar

[7]

D. Franco and A. Ruiz-Herrera, To connect or not to connect isolated patches, J. Theor. Biol., 370 (2015), 72-80.  doi: 10.1016/j.jtbi.2015.01.029.  Google Scholar

[8]

H. I. Freedman and D. Waltman, Mathematical models of population interactions with dispersal. I. Stability of two habitats with and without a predator, SIAM J. Appl. Math., 32 (1977), 631-648.  doi: 10.1137/0132052.  Google Scholar

[9]

E. E. Goldwyn and A. Hastings, When can dispersal synchronize populations?, Theor. Popul. Biol., 73 (2008), 395-402.   Google Scholar

[10]

J. K. Hale, Ordinary Differential Equations, Wiley-Interscience, 1969.  Google Scholar

[11] J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge, UK, 1998.  doi: 10.1017/CBO9781139173179.  Google Scholar
[12]

R. D. Holt, Population dynamics in two-patch environments: Some anomalous consequences of an optimal habitat distribution, Theoret. Population Biol., 28 (1985), 181-208.  doi: 10.1016/0040-5809(85)90027-9.  Google Scholar

[13]

Y. Huang and O. Diekmann, Predator migration in response to prey density: What are the consequences?, J. Math. Biol., 43 (2001), 561-581.  doi: 10.1007/s002850100107.  Google Scholar

[14]

R. HuangY. Wang and H. Wu, Population abundance in predator-prey systems with predator's dispersal between two patches, Theor. Popu. Biol., 135 (2020), 1-8.   Google Scholar

[15]

V. HutsonY. Lou and K. Mischaikow, Convergence in competition models with small diffusion coefficients, J. Differential Equations, 211 (2005), 135-161.  doi: 10.1016/j.jde.2004.06.003.  Google Scholar

[16]

V. A. Jansen, The dynamics of two diffusively coupled predator-prey populations, Theo. Popu. Biol., 59 (2001), 119-131.   Google Scholar

[17]

Y. KangS. K. Sasmal and K. Messan, A two-patch prey-predator model with predator dispersal driven by the predation strength, Math. Biosci. Eng., 14 (2017), 843-880.  doi: 10.3934/mbe.2017046.  Google Scholar

[18]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory in: Applied Mathematical Sciences, Vol. 112, third ed., Springer-Verlag, New York, 2004. doi: 10.1007/978-1-4757-3978-7.  Google Scholar

[19]

Y. Liu, The Dynamical Behavior of a Two Patch Predator-Prey Model, Honor Thesis, from The College of William and Mary, 2010. Google Scholar

[20]

Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential Equations, 223 (2006), 400-426.  doi: 10.1016/j.jde.2005.05.010.  Google Scholar

[21]

A. Ruiz-Herrera and P. J. Torres, Effects of diffusion on total biomass in simple metacommunities, J. Theor. Biol., 447 (2018), 12-24.  doi: 10.1016/j.jtbi.2018.03.018.  Google Scholar

[22] H. L. Smith and P. Waltman, The Theory of the Chemostat, Cambridge University Press, New York, 1995.   Google Scholar
[23]

Y. Wang, Pollination-mutualisms in a two-patch system with dispersal, J. Theor. Biol., 476 (2019), 51-61.  doi: 10.1016/j.jtbi.2019.06.004.  Google Scholar

[24]

Y. Wang, Asymptotic state of a two-patch system with infinite diffusion, Bull. Math. Biol., 81 (2019), 1665-1686.  doi: 10.1007/s11538-019-00582-4.  Google Scholar

[25]

Y. Wang and D. L. DeAngelis, Comparison of effects of diffusion in heterogeneous and homogeneous with the same total carrying capacity on total realized population size, Theor. Popul. Biol., 125 (2019), 30-37.   Google Scholar

[26]

Y. WangH. WuY. HeZ. Wang and K. Hu, Population abundance of two-patch competitive systems with asymmetric dispersal, J. Math. Biol., 81 (2020), 315-341.  doi: 10.1007/s00285-020-01511-z.  Google Scholar

[27]

H. WuY. WangY. Li and D. L. DeAngelis, Dispersal asymmetry in a two-patch system with source-sink populations, Theor. Popul. Biol., 131 (2020), 54-65.   Google Scholar

[28]

B. ZhangK. AlexM. L. KeenanZ. LuL. R. ArrixW.-M. NiD.L. DeAngelis and J. D. Dyken, Carrying capacity in a heterogeneous environment with habitat connectivity, Ecol. Lett., 20 (2017), 1118-1128.   Google Scholar

[29]

B. ZhangD. L. DeAngelisW. M. NiY. WangL. ZhaiA. KulaS. Xu and J. D. Van Dyken, Effect of stressors on the carrying capacity of spatially-distributed metapopulations, The American Naturalis, 196 (2020), 46-60.   Google Scholar

[30]

B. ZhangX. LiuD. L. DeAngelisW.-M. Ni and G. G. Wang, Effects of dispersal on total biomass in a patchy, heterogeneous system: Analysis and experiment, Math. Biosci., 264 (2015), 54-62.  doi: 10.1016/j.mbs.2015.03.005.  Google Scholar

show all references

References:
[1]

R. ArditiC. Lobry and T. Sari, Is dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation, Theor. Popul. Biol., 106 (2015), 45-59.   Google Scholar

[2]

R. ArditiC. Lobry and T. Sari, Asymmetric dispersal in the multi-patch logistic equation, Theor. Popul. Biol., 120 (2018), 11-15.   Google Scholar

[3]

J. Astr$\ddot{o}$m and T. P$\ddot{a}$rt, Negative and matrix-dependent effects of dispersal corridors in an experimental metacommunity., Ecology, 94 2013), 1939-1970. Google Scholar

[4]

G. ButlerH. I. Freedman and P. Waltman, Uniformly persistent systems, Proc. Amer. Math. Soc., 96 (1986), 425-430.  doi: 10.1090/S0002-9939-1986-0822433-4.  Google Scholar

[5]

L. Fahrig, Effect of habitat fragmentation on the extinction threshold: A synthesis, Ecol. Appl., 12 (2002), 346-353.   Google Scholar

[6]

W. FengB. Rock and J. Hinson, On a new model of two-patch predator-prey system with migration of both species, J. Appl. Anal. Comput., 1 (2011), 193-203.  doi: 10.11948/2011013.  Google Scholar

[7]

D. Franco and A. Ruiz-Herrera, To connect or not to connect isolated patches, J. Theor. Biol., 370 (2015), 72-80.  doi: 10.1016/j.jtbi.2015.01.029.  Google Scholar

[8]

H. I. Freedman and D. Waltman, Mathematical models of population interactions with dispersal. I. Stability of two habitats with and without a predator, SIAM J. Appl. Math., 32 (1977), 631-648.  doi: 10.1137/0132052.  Google Scholar

[9]

E. E. Goldwyn and A. Hastings, When can dispersal synchronize populations?, Theor. Popul. Biol., 73 (2008), 395-402.   Google Scholar

[10]

J. K. Hale, Ordinary Differential Equations, Wiley-Interscience, 1969.  Google Scholar

[11] J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge, UK, 1998.  doi: 10.1017/CBO9781139173179.  Google Scholar
[12]

R. D. Holt, Population dynamics in two-patch environments: Some anomalous consequences of an optimal habitat distribution, Theoret. Population Biol., 28 (1985), 181-208.  doi: 10.1016/0040-5809(85)90027-9.  Google Scholar

[13]

Y. Huang and O. Diekmann, Predator migration in response to prey density: What are the consequences?, J. Math. Biol., 43 (2001), 561-581.  doi: 10.1007/s002850100107.  Google Scholar

[14]

R. HuangY. Wang and H. Wu, Population abundance in predator-prey systems with predator's dispersal between two patches, Theor. Popu. Biol., 135 (2020), 1-8.   Google Scholar

[15]

V. HutsonY. Lou and K. Mischaikow, Convergence in competition models with small diffusion coefficients, J. Differential Equations, 211 (2005), 135-161.  doi: 10.1016/j.jde.2004.06.003.  Google Scholar

[16]

V. A. Jansen, The dynamics of two diffusively coupled predator-prey populations, Theo. Popu. Biol., 59 (2001), 119-131.   Google Scholar

[17]

Y. KangS. K. Sasmal and K. Messan, A two-patch prey-predator model with predator dispersal driven by the predation strength, Math. Biosci. Eng., 14 (2017), 843-880.  doi: 10.3934/mbe.2017046.  Google Scholar

[18]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory in: Applied Mathematical Sciences, Vol. 112, third ed., Springer-Verlag, New York, 2004. doi: 10.1007/978-1-4757-3978-7.  Google Scholar

[19]

Y. Liu, The Dynamical Behavior of a Two Patch Predator-Prey Model, Honor Thesis, from The College of William and Mary, 2010. Google Scholar

[20]

Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential Equations, 223 (2006), 400-426.  doi: 10.1016/j.jde.2005.05.010.  Google Scholar

[21]

A. Ruiz-Herrera and P. J. Torres, Effects of diffusion on total biomass in simple metacommunities, J. Theor. Biol., 447 (2018), 12-24.  doi: 10.1016/j.jtbi.2018.03.018.  Google Scholar

[22] H. L. Smith and P. Waltman, The Theory of the Chemostat, Cambridge University Press, New York, 1995.   Google Scholar
[23]

Y. Wang, Pollination-mutualisms in a two-patch system with dispersal, J. Theor. Biol., 476 (2019), 51-61.  doi: 10.1016/j.jtbi.2019.06.004.  Google Scholar

[24]

Y. Wang, Asymptotic state of a two-patch system with infinite diffusion, Bull. Math. Biol., 81 (2019), 1665-1686.  doi: 10.1007/s11538-019-00582-4.  Google Scholar

[25]

Y. Wang and D. L. DeAngelis, Comparison of effects of diffusion in heterogeneous and homogeneous with the same total carrying capacity on total realized population size, Theor. Popul. Biol., 125 (2019), 30-37.   Google Scholar

[26]

Y. WangH. WuY. HeZ. Wang and K. Hu, Population abundance of two-patch competitive systems with asymmetric dispersal, J. Math. Biol., 81 (2020), 315-341.  doi: 10.1007/s00285-020-01511-z.  Google Scholar

[27]

H. WuY. WangY. Li and D. L. DeAngelis, Dispersal asymmetry in a two-patch system with source-sink populations, Theor. Popul. Biol., 131 (2020), 54-65.   Google Scholar

[28]

B. ZhangK. AlexM. L. KeenanZ. LuL. R. ArrixW.-M. NiD.L. DeAngelis and J. D. Dyken, Carrying capacity in a heterogeneous environment with habitat connectivity, Ecol. Lett., 20 (2017), 1118-1128.   Google Scholar

[29]

B. ZhangD. L. DeAngelisW. M. NiY. WangL. ZhaiA. KulaS. Xu and J. D. Van Dyken, Effect of stressors on the carrying capacity of spatially-distributed metapopulations, The American Naturalis, 196 (2020), 46-60.   Google Scholar

[30]

B. ZhangX. LiuD. L. DeAngelisW.-M. Ni and G. G. Wang, Effects of dispersal on total biomass in a patchy, heterogeneous system: Analysis and experiment, Math. Biosci., 264 (2015), 54-62.  doi: 10.1016/j.mbs.2015.03.005.  Google Scholar

Figure 1.  Effect of dispersal $ D_1 $ on dynamics of system (1). Fix $ r = 1, r_1 = 0.2, r_2 = 0.1, a_{12} = 0.9, a_{21} = 0.5, b = 1, K = 4, D_2 = 0.1 $. (a-b) Let $ D_1 = 0.03 $ and $ D_1 = 0.15 $, respectively. The resource and consumer coexist in periodic oscillations, while the amplitude decreases with the increase of $ D_1 $. (c) Let $ D_1 = 0.28 $. The resource and consumer coexist at a steady state $ P^*( 2.1250, 1.6272, 2.2787) $. (d) Let $ D_1 = 0.9 $. The consumer goes to extinction even though the resource species persists
Figure 2.  Dynamics of system (1). Let $ r = 1, r_1 = 0.2, r_2 = 0.1, a_{12} = 0.9, a_{21} = 0.8, b = 1, K = 4, D_1 = 0.3, D_2 = 0.1 $. Numerical simulations display that all positive solutions (except $ P^* $) of systems (1) converge to the unique limit cycle and exhibit periodic oscillations
Figure 3.  Comparison of $ T_1(D_1, D_2) $ and $ T_0 $. The red and black lines represent $ T_1 $ and $ T_0 $, respectively. Fix $ r = 1, r_1 = 0.2, r_2 = 0.1, a_{12} = 2, a_{21} = 0.8, b = 1, K = 2 $. (a) Fix $ D_2 = 0.1 $ but let $ D_1 $ vary. $ T_1 $ approaches its maximum $ T_{1max} = 1.5089 $ at $ \bar{D_1} = 0.4276 $, and the curve is hump-shaped. We have $ T_1>T_0 $ if $ D_1<0.6305 $; $ T_1<T_0 $ if $ D_1>0.6305 $ as shown in Proposition 4(ii). (b) Fix $ D_1 = 0.86 $ but let $ D_2 $ vary. $ T_1 $ approaches its maximum $ T_{1max} = 1.5089 $ at $ \bar{D_2} = 0.3023 $. The curve is hump-shaped if $ D_2<0.6014 $ but is convex if $ D_2>0.6014 $. We have $ T_1>T_0 $ if $ D_2>\hat{D_2} = 0.1728 $; $ T_1<T_0 $ if $ D_2<0.1728 $
Figs. 3a-b, i.e., when $ D_2 $ is fixed, the surface becomes Fig. 3a; when $ D_1 $ is fixed, the surface becomes Fig. 3b">Figure 4.  The surface of $ T_1(D_1, D_2) $ when both $ D_1 $ and $ D_2 $ vary. Fix $ r = 1, r_1 = 0.2, r_2 = 0.1, a_{12} = 2, a_{21} = 0.8, b = 1, K = 2 $. Then $ T_1 $ approaches its maximum $ T_{1max} = 1.5089 $ at a line $ D_1 = 0.213+2.137D_2 $, as shown in proposition 5(iii). This figure provides an intuition of the surface of $ T_1 = T_1(D_1, D_2) $, which is a combination of Figs. 3a-b, i.e., when $ D_2 $ is fixed, the surface becomes Fig. 3a; when $ D_1 $ is fixed, the surface becomes Fig. 3b
Figure 5.  Dynamics of system (1). Fix $ r = 1, r_1 = 0.2, r_2 = 0.1, a_{12} = 0.9, b = 1, K = 4, D_1 = 0.28, D_2 = 0.1 $. (a) Let $ a_{21} = 0.4 $. The consumer goes to extinction even though the resource species persists. (b) Let $ a_{21} = 0.5 $. The resource and consumer coexist at a steady state $ P^*(2.1250, 1.6272, 2.2787) $. (c-d) Let $ a_{21} = 0.65 $ and $ a_{21} = 0.8 $, respectively. The resource and consumer coexist in periodic oscillation, while the amplitude increases with the increase of $ a_{21} $
[1]

Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507

[2]

Xiaoyuan Chang, Junjie Wei. Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge. Mathematical Biosciences & Engineering, 2013, 10 (4) : 979-996. doi: 10.3934/mbe.2013.10.979

[3]

Julián López-Gómez, Eduardo Muñoz-Hernández. A spatially heterogeneous predator-prey model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 2085-2113. doi: 10.3934/dcdsb.2020081

[4]

Hongyong Zhao, Daiyong Wu. Point to point traveling wave and periodic traveling wave induced by Hopf bifurcation for a diffusive predator-prey system. Discrete & Continuous Dynamical Systems - S, 2020, 13 (11) : 3271-3284. doi: 10.3934/dcdss.2020129

[5]

Zuolin Shen, Junjie Wei. Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect. Mathematical Biosciences & Engineering, 2018, 15 (3) : 693-715. doi: 10.3934/mbe.2018031

[6]

Zhihua Liu, Hui Tang, Pierre Magal. Hopf bifurcation for a spatially and age structured population dynamics model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1735-1757. doi: 10.3934/dcdsb.2015.20.1735

[7]

Yaying Dong, Shanbing Li, Yanling Li. Effects of dispersal for a predator-prey model in a heterogeneous environment. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2511-2528. doi: 10.3934/cpaa.2019114

[8]

Yu-Xia Hao, Wan-Tong Li, Fei-Ying Yang. Traveling waves in a nonlocal dispersal predator-prey model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (9) : 3113-3139. doi: 10.3934/dcdss.2020340

[9]

Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129

[10]

Shanshan Chen, Jianshe Yu. Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 43-62. doi: 10.3934/dcds.2018002

[11]

Canan Çelik. Dynamical behavior of a ratio dependent predator-prey system with distributed delay. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 719-738. doi: 10.3934/dcdsb.2011.16.719

[12]

Wei Feng, Jody Hinson. Stability and pattern in two-patch predator-prey population dynamics. Conference Publications, 2005, 2005 (Special) : 268-279. doi: 10.3934/proc.2005.2005.268

[13]

Bing Zeng, Shengfu Deng, Pei Yu. Bogdanov-Takens bifurcation in predator-prey systems. Discrete & Continuous Dynamical Systems - S, 2020, 13 (11) : 3253-3269. doi: 10.3934/dcdss.2020130

[14]

Feiying Yang, Wantong Li, Renhu Wang. Invasion waves for a nonlocal dispersal predator-prey model with two predators and one prey. Communications on Pure & Applied Analysis, 2021, 20 (12) : 4083-4105. doi: 10.3934/cpaa.2021146

[15]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[16]

Rong Zou, Shangjiang Guo. Dynamics of a diffusive Leslie-Gower predator-prey model in spatially heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4189-4210. doi: 10.3934/dcdsb.2020093

[17]

Shuxia Pan. Asymptotic spreading in a delayed dispersal predator-prey system without comparison principle. Electronic Research Archive, 2019, 27: 89-99. doi: 10.3934/era.2019011

[18]

Jicai Huang, Sanhong Liu, Shigui Ruan, Xinan Zhang. Bogdanov-Takens bifurcation of codimension 3 in a predator-prey model with constant-yield predator harvesting. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1041-1055. doi: 10.3934/cpaa.2016.15.1041

[19]

Qing Zhu, Huaqin Peng, Xiaoxiao Zheng, Huafeng Xiao. Bifurcation analysis of a stage-structured predator-prey model with prey refuge. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2195-2209. doi: 10.3934/dcdss.2019141

[20]

Jicai Huang, Yijun Gong, Shigui Ruan. Bifurcation analysis in a predator-prey model with constant-yield predator harvesting. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2101-2121. doi: 10.3934/dcdsb.2013.18.2101

2020 Impact Factor: 1.327

Article outline

Figures and Tables

[Back to Top]