# American Institute of Mathematical Sciences

doi: 10.3934/dcdsb.2021078
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

## Energy equality for weak solutions to the 3D magnetohydrodynamic equations in a bounded domain

 1 Institute for Advanced Study in Mathematics, Harbin Institute of Technology, Harbin 150001, China 2 College of Mathematical Sciences, Harbin Engineering University, Harbin 150001, China

* Corresponding author: Bijun Zuo

Received  September 2020 Revised  December 2020 Early access March 2021

In this paper, we study the energy equality for weak solutions to the 3D homogeneous incompressible magnetohydrodynamic equations with viscosity and magnetic diffusion in a bounded domain. Two types of regularity conditions are imposed on weak solutions to ensure the energy equality. For the first type, some global integrability condition for the velocity $\mathbf u$ is required, while for the magnetic field $\mathbf b$ and the magnetic pressure $\pi$, some suitable integrability conditions near the boundary are sufficient. In contrast with the first type, the second type claims that if some additional interior integrability is imposed on $\mathbf b$, then the regularity on $\mathbf u$ can be relaxed.

Citation: Guodong Wang, Bijun Zuo. Energy equality for weak solutions to the 3D magnetohydrodynamic equations in a bounded domain. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021078
##### References:
 [1] I. Akramov, T. Debiec, J. Skipper and E. Wiedemann, Energy conservation for the compressible Euler and Navier-Stokes equations with vacuum, Anal. PDE, 13 (2020), 789-811.  doi: 10.2140/apde.2020.13.789.  Google Scholar [2] C. Bardos and E. S. Titi, Onsager's conjecture for the incompressible Euler equations in bounded domains, Arch. Ration. Mech. Anal., 228 (2018), 197-207.  doi: 10.1007/s00205-017-1189-x.  Google Scholar [3] C. Bardos, E. S. Titi and E. Wiedemann, Onsager's conjecture with physical boundaries and an application to the vanishing viscosity limit, Comm. Math. Phys., 370 (2019), 291-310.  doi: 10.1007/s00220-019-03493-6.  Google Scholar [4] R. E. Caflisch, I. Klapper and G. Steele, Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD, Comm. Math. Phys., 184 (1997), 443-455.  doi: 10.1007/s002200050067.  Google Scholar [5] M. Chen, Z. Liang, D. Wang and R. Xu, Energy equality in compressible fluids with physical boundaries, SIAM J. Math. Anal., 52 (2020), 1363-1385.  doi: 10.1137/19M1287213.  Google Scholar [6] R. M. Chen and C. Yu, Onsager's energy conservation for inhomogeneous Euler equations, J. Math. Pures Appl., 131 (2019), 1-16.  doi: 10.1016/j.matpur.2019.02.003.  Google Scholar [7] A. Cheskidov, P. Constantin, S. Friedlander and R. Shvydkoy, Energy conservation and Onsager's conjecture for the Euler equations, Nonlinearity, 21 (2008), 1233-1252.  doi: 10.1088/0951-7715/21/6/005.  Google Scholar [8] P. Constantin and W. E and E. S. Titi, Onsager's conjecture on the energy conservation for solutions of Euler's equation, Comm. Math. Phys., 165 (1994), 207-209. doi: 10.1007/BF02099744.  Google Scholar [9] T. D. Drivas and H. Q. Nguyen, Onsager's conjecture and anomalous dissipation on domains with doundary, SIAM J. Math. Anal., 50 (2018), 4785-4811.  doi: 10.1137/18M1178864.  Google Scholar [10] J. Duchon and R. Robert, Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations, Nonlinearity, 13 (2000), 249-255.  doi: 10.1088/0951-7715/13/1/312.  Google Scholar [11] L. Escauriaza and S. Montaner, Some remarks on the $L^p$ regularity of second derivatives of solutions to non-divergence elliptic equations and the Dini condition, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 28 (2017), 49-63.  doi: 10.4171/RLM/751.  Google Scholar [12] G. L. Eyink, Energy dissipation without viscosity in ideal hydrodynamics, I. Fourier analysis and local energy transfer, Phys. D, 78 (1994), 222-240.  doi: 10.1016/0167-2789(94)90117-1.  Google Scholar [13] E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford Lecture Series in Mathematics and its Applications, vol. 26. Oxford University Press, Oxford, 2004.   Google Scholar [14] E. Feireisl, P. Gwiazda, A. Świerczewska-Gwiazda and E. Wiedemann, Regularity and energy conservation for the compressible Euler equations, Arch. Ration. Mech. Anal., 223 (2017), 1375-1395.  doi: 10.1007/s00205-016-1060-5.  Google Scholar [15] A. Hasegawa, Self-organization processes in continous media, Adv. in Physics, 34 (1985), 1-42.  doi: 10.1080/00018738500101721.  Google Scholar [16] C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations, J. Differential Equations, 213 (2005), 235-254.  doi: 10.1016/j.jde.2004.07.002.  Google Scholar [17] E. Kang and J. Lee, Remarks on the magnetic helicity and energy conservation for ideal magneto-hydrodynamics, Nonlinearity, 20 (2007), 2681-2689.  doi: 10.1088/0951-7715/20/11/011.  Google Scholar [18] A. Kufner, O. John and S. Fu${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over c} }}$ík, Function Spaces, Academia, Prague, 1977.  Google Scholar [19] I. Lacroix-Violet and A. Vasseur, Global weak solutions to the compressible quantum Navier-Stokes equation and its semi-classical limit, J. Math. Pures Appl., 114 (2018), 191-210.  doi: 10.1016/j.matpur.2017.12.002.  Google Scholar [20] T. M. Leslie and R. Shvydkoy, The energy balance relation for weak solutions of the density-dependent Navier-Stokes equations, J. Differential Equations, 261 (2016), 3719-3733.  doi: 10.1016/j.jde.2016.06.001.  Google Scholar [21] P.-L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 1. Incompressible Models. Oxford Lecture Series in Mathematics and its Applications, vol. 3. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1996.  Google Scholar [22] Q.-H. Nguyen and P.-T. Nguyen, Onsager's conjecture on the energy conservation for solutions of Euler equations in bounded domains, J. Nonlinear Sci., 29 (2019), 207-213.  doi: 10.1007/s00332-018-9483-9.  Google Scholar [23] Q.-H. Nguyen, P.-T. Nguyen and B. Q. Tang, Energy conservation for inhomogeneous incompressible and compressible Euler equations, J. Differential Equations, 269 (2020), 7171-7210.  doi: 10.1016/j.jde.2020.05.025.  Google Scholar [24] Q.-H. Nguyen, P.-T. Nguyen and B. Q. Tang, Energy equalities for compressible Navier-Stokes equations, Nonlinearity, 32 (2019), 4206-4231.  doi: 10.1088/1361-6544/ab28ae.  Google Scholar [25] L. Onsager, Statistical hydrodynamics, Nuovo Cimento (9) 6, (Supplemento, 2 (Convegno Internazionale di Meccanica Statistica)), (1949), 279–287. doi: 10.1007/BF02780991.  Google Scholar [26] H. Politano, A. Pouquet and P.-L. Sulem, Current and votticity dynamics in three-dimensional magnetohydrodynamics turbulence, Phys. Plasmas, 2 (1995), 2931-2939.  doi: 10.1063/1.871473.  Google Scholar [27] J. Serrin, The initial value problem for the Navier-Stokes equations. Nonlinear Problems. Proceedings of the Symposium, Madison, Wisconsin, 1962. University of Wisconsin Press, Madison, Wisconsin, 69-98, 1963.  Google Scholar [28] M. Shinbrot, The energy equation for the Navier-Stokes system, SIAM J. Math. Anal., 5 (1974), 948-954.  doi: 10.1137/0505092.  Google Scholar [29] J. Simon, Compact sets in the space $L^p(0, T; B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar [30] T. Wang, X. Zhao, Y. Chen and M. Zhang, Energy conservation for the weak solutions to the equations of compressible magnetohydrodynamic flows in three dimensions, J. Math. Anal. Appl., 480 (2019), 123373, 18 pp. doi: 10.1016/j.jmaa.2019.07.063.  Google Scholar [31] Y. Wang and B. Zuo, Energy and cross-helicity conservation for the three-dimensional ideal MHD equations in a bounded domain, J. Differential Equations, 268 (2020), 4079-4101.  doi: 10.1016/j.jde.2019.10.045.  Google Scholar [32] C. Yu, A new proof to the energy conservation for the Navier-Stokes equations, arXiv: 1604.05697. Google Scholar [33] C. Yu, Energy conservation for the weak solutions of the compressible Navier-Stokes equations, Arch. Ration. Mech. Anal., 225 (2017), 1073-1087.  doi: 10.1007/s00205-017-1121-4.  Google Scholar [34] C. Yu, The energy equality for the Navier-Stokes equations in bounded domains, arXiv: 1802.07661. Google Scholar [35] X. Yu, A note on the energy conservation of the ideal MHD equations, Nonlinearity, 22 (2009), 913-922.  doi: 10.1088/0951-7715/22/4/012.  Google Scholar [36] Y. Zhou, Remarks on regularities for the 3D MHD equations, Discrete Contin. Dyn. Syst., 12 (2005), 881-886.  doi: 10.3934/dcds.2005.12.881.  Google Scholar

show all references

##### References:
 [1] I. Akramov, T. Debiec, J. Skipper and E. Wiedemann, Energy conservation for the compressible Euler and Navier-Stokes equations with vacuum, Anal. PDE, 13 (2020), 789-811.  doi: 10.2140/apde.2020.13.789.  Google Scholar [2] C. Bardos and E. S. Titi, Onsager's conjecture for the incompressible Euler equations in bounded domains, Arch. Ration. Mech. Anal., 228 (2018), 197-207.  doi: 10.1007/s00205-017-1189-x.  Google Scholar [3] C. Bardos, E. S. Titi and E. Wiedemann, Onsager's conjecture with physical boundaries and an application to the vanishing viscosity limit, Comm. Math. Phys., 370 (2019), 291-310.  doi: 10.1007/s00220-019-03493-6.  Google Scholar [4] R. E. Caflisch, I. Klapper and G. Steele, Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD, Comm. Math. Phys., 184 (1997), 443-455.  doi: 10.1007/s002200050067.  Google Scholar [5] M. Chen, Z. Liang, D. Wang and R. Xu, Energy equality in compressible fluids with physical boundaries, SIAM J. Math. Anal., 52 (2020), 1363-1385.  doi: 10.1137/19M1287213.  Google Scholar [6] R. M. Chen and C. Yu, Onsager's energy conservation for inhomogeneous Euler equations, J. Math. Pures Appl., 131 (2019), 1-16.  doi: 10.1016/j.matpur.2019.02.003.  Google Scholar [7] A. Cheskidov, P. Constantin, S. Friedlander and R. Shvydkoy, Energy conservation and Onsager's conjecture for the Euler equations, Nonlinearity, 21 (2008), 1233-1252.  doi: 10.1088/0951-7715/21/6/005.  Google Scholar [8] P. Constantin and W. E and E. S. Titi, Onsager's conjecture on the energy conservation for solutions of Euler's equation, Comm. Math. Phys., 165 (1994), 207-209. doi: 10.1007/BF02099744.  Google Scholar [9] T. D. Drivas and H. Q. Nguyen, Onsager's conjecture and anomalous dissipation on domains with doundary, SIAM J. Math. Anal., 50 (2018), 4785-4811.  doi: 10.1137/18M1178864.  Google Scholar [10] J. Duchon and R. Robert, Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations, Nonlinearity, 13 (2000), 249-255.  doi: 10.1088/0951-7715/13/1/312.  Google Scholar [11] L. Escauriaza and S. Montaner, Some remarks on the $L^p$ regularity of second derivatives of solutions to non-divergence elliptic equations and the Dini condition, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 28 (2017), 49-63.  doi: 10.4171/RLM/751.  Google Scholar [12] G. L. Eyink, Energy dissipation without viscosity in ideal hydrodynamics, I. Fourier analysis and local energy transfer, Phys. D, 78 (1994), 222-240.  doi: 10.1016/0167-2789(94)90117-1.  Google Scholar [13] E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford Lecture Series in Mathematics and its Applications, vol. 26. Oxford University Press, Oxford, 2004.   Google Scholar [14] E. Feireisl, P. Gwiazda, A. Świerczewska-Gwiazda and E. Wiedemann, Regularity and energy conservation for the compressible Euler equations, Arch. Ration. Mech. Anal., 223 (2017), 1375-1395.  doi: 10.1007/s00205-016-1060-5.  Google Scholar [15] A. Hasegawa, Self-organization processes in continous media, Adv. in Physics, 34 (1985), 1-42.  doi: 10.1080/00018738500101721.  Google Scholar [16] C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations, J. Differential Equations, 213 (2005), 235-254.  doi: 10.1016/j.jde.2004.07.002.  Google Scholar [17] E. Kang and J. Lee, Remarks on the magnetic helicity and energy conservation for ideal magneto-hydrodynamics, Nonlinearity, 20 (2007), 2681-2689.  doi: 10.1088/0951-7715/20/11/011.  Google Scholar [18] A. Kufner, O. John and S. Fu${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over c} }}$ík, Function Spaces, Academia, Prague, 1977.  Google Scholar [19] I. Lacroix-Violet and A. Vasseur, Global weak solutions to the compressible quantum Navier-Stokes equation and its semi-classical limit, J. Math. Pures Appl., 114 (2018), 191-210.  doi: 10.1016/j.matpur.2017.12.002.  Google Scholar [20] T. M. Leslie and R. Shvydkoy, The energy balance relation for weak solutions of the density-dependent Navier-Stokes equations, J. Differential Equations, 261 (2016), 3719-3733.  doi: 10.1016/j.jde.2016.06.001.  Google Scholar [21] P.-L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 1. Incompressible Models. Oxford Lecture Series in Mathematics and its Applications, vol. 3. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1996.  Google Scholar [22] Q.-H. Nguyen and P.-T. Nguyen, Onsager's conjecture on the energy conservation for solutions of Euler equations in bounded domains, J. Nonlinear Sci., 29 (2019), 207-213.  doi: 10.1007/s00332-018-9483-9.  Google Scholar [23] Q.-H. Nguyen, P.-T. Nguyen and B. Q. Tang, Energy conservation for inhomogeneous incompressible and compressible Euler equations, J. Differential Equations, 269 (2020), 7171-7210.  doi: 10.1016/j.jde.2020.05.025.  Google Scholar [24] Q.-H. Nguyen, P.-T. Nguyen and B. Q. Tang, Energy equalities for compressible Navier-Stokes equations, Nonlinearity, 32 (2019), 4206-4231.  doi: 10.1088/1361-6544/ab28ae.  Google Scholar [25] L. Onsager, Statistical hydrodynamics, Nuovo Cimento (9) 6, (Supplemento, 2 (Convegno Internazionale di Meccanica Statistica)), (1949), 279–287. doi: 10.1007/BF02780991.  Google Scholar [26] H. Politano, A. Pouquet and P.-L. Sulem, Current and votticity dynamics in three-dimensional magnetohydrodynamics turbulence, Phys. Plasmas, 2 (1995), 2931-2939.  doi: 10.1063/1.871473.  Google Scholar [27] J. Serrin, The initial value problem for the Navier-Stokes equations. Nonlinear Problems. Proceedings of the Symposium, Madison, Wisconsin, 1962. University of Wisconsin Press, Madison, Wisconsin, 69-98, 1963.  Google Scholar [28] M. Shinbrot, The energy equation for the Navier-Stokes system, SIAM J. Math. Anal., 5 (1974), 948-954.  doi: 10.1137/0505092.  Google Scholar [29] J. Simon, Compact sets in the space $L^p(0, T; B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar [30] T. Wang, X. Zhao, Y. Chen and M. Zhang, Energy conservation for the weak solutions to the equations of compressible magnetohydrodynamic flows in three dimensions, J. Math. Anal. Appl., 480 (2019), 123373, 18 pp. doi: 10.1016/j.jmaa.2019.07.063.  Google Scholar [31] Y. Wang and B. Zuo, Energy and cross-helicity conservation for the three-dimensional ideal MHD equations in a bounded domain, J. Differential Equations, 268 (2020), 4079-4101.  doi: 10.1016/j.jde.2019.10.045.  Google Scholar [32] C. Yu, A new proof to the energy conservation for the Navier-Stokes equations, arXiv: 1604.05697. Google Scholar [33] C. Yu, Energy conservation for the weak solutions of the compressible Navier-Stokes equations, Arch. Ration. Mech. Anal., 225 (2017), 1073-1087.  doi: 10.1007/s00205-017-1121-4.  Google Scholar [34] C. Yu, The energy equality for the Navier-Stokes equations in bounded domains, arXiv: 1802.07661. Google Scholar [35] X. Yu, A note on the energy conservation of the ideal MHD equations, Nonlinearity, 22 (2009), 913-922.  doi: 10.1088/0951-7715/22/4/012.  Google Scholar [36] Y. Zhou, Remarks on regularities for the 3D MHD equations, Discrete Contin. Dyn. Syst., 12 (2005), 881-886.  doi: 10.3934/dcds.2005.12.881.  Google Scholar
 [1] Ming He, Jianwen Zhang. Global cylindrical solution to the compressible MHD equations in an exterior domain. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1841-1865. doi: 10.3934/cpaa.2009.8.1841 [2] Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637 [3] Yong Zeng. Existence and uniqueness of very weak solution of the MHD type system. Discrete & Continuous Dynamical Systems, 2020, 40 (10) : 5617-5638. doi: 10.3934/dcds.2020240 [4] Manuel Núñez. Existence of solutions of the equations of electron magnetohydrodynamics in a bounded domain. Discrete & Continuous Dynamical Systems, 2010, 26 (3) : 1019-1034. doi: 10.3934/dcds.2010.26.1019 [5] Jiahong Wu. Regularity results for weak solutions of the 3D MHD equations. Discrete & Continuous Dynamical Systems, 2004, 10 (1&2) : 543-556. doi: 10.3934/dcds.2004.10.543 [6] Tomoyuki Suzuki. Regularity criteria in weak spaces in terms of the pressure to the MHD equations. Conference Publications, 2011, 2011 (Special) : 1335-1343. doi: 10.3934/proc.2011.2011.1335 [7] Fucai Li, Yue Li. Global weak solutions for a kinetic-fluid model with local alignment force in a bounded domain. Communications on Pure & Applied Analysis, 2021, 20 (10) : 3583-3604. doi: 10.3934/cpaa.2021122 [8] Gleb G. Doronin, Nikolai A. Larkin. Kawahara equation in a bounded domain. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 783-799. doi: 10.3934/dcdsb.2008.10.783 [9] Fei Chen, Yongsheng Li, Huan Xu. Global solution to the 3D nonhomogeneous incompressible MHD equations with some large initial data. Discrete & Continuous Dynamical Systems, 2016, 36 (6) : 2945-2967. doi: 10.3934/dcds.2016.36.2945 [10] Yana Guo, Yan Jia, Bo-Qing Dong. Global stability solution of the 2D MHD equations with mixed partial dissipation. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021141 [11] Shusen Yan, Weilin Yu. Planar vortices in a bounded domain with a hole. Electronic Research Archive, 2021, 29 (6) : 4229-4241. doi: 10.3934/era.2021081 [12] Chérif Amrouche, María Ángeles Rodríguez-Bellido. On the very weak solution for the Oseen and Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 159-183. doi: 10.3934/dcdss.2010.3.159 [13] Tong Li, Anthony Suen. Existence of intermediate weak solution to the equations of multi-dimensional chemotaxis systems. Discrete & Continuous Dynamical Systems, 2016, 36 (2) : 861-875. doi: 10.3934/dcds.2016.36.861 [14] Jishan Fan, Fucai Li, Gen Nakamura. Global existence and low Mach number limit to the 3D compressible magnetohydrodynamic equations in a bounded domain. Conference Publications, 2015, 2015 (special) : 387-394. doi: 10.3934/proc.2015.0387 [15] Jishan Fan, Fucai Li, Gen Nakamura. Convergence of the full compressible Navier-Stokes-Maxwell system to the incompressible magnetohydrodynamic equations in a bounded domain. Kinetic & Related Models, 2016, 9 (3) : 443-453. doi: 10.3934/krm.2016002 [16] Thomas Duyckaerts, Carlos E. Kenig, Frank Merle. Profiles for bounded solutions of dispersive equations, with applications to energy-critical wave and Schrödinger equations. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1275-1326. doi: 10.3934/cpaa.2015.14.1275 [17] Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure & Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35 [18] James M. Scott, Tadele Mengesha. Self-Improving inequalities for bounded weak solutions to nonlocal double phase equations. Communications on Pure & Applied Analysis, 2022, 21 (1) : 183-212. doi: 10.3934/cpaa.2021174 [19] S. S. Krigman. Exact boundary controllability of Maxwell's equations with weak conductivity in the heterogeneous medium inside a general domain. Conference Publications, 2007, 2007 (Special) : 590-601. doi: 10.3934/proc.2007.2007.590 [20] Kim Dang Phung. Boundary stabilization for the wave equation in a bounded cylindrical domain. Discrete & Continuous Dynamical Systems, 2008, 20 (4) : 1057-1093. doi: 10.3934/dcds.2008.20.1057

2020 Impact Factor: 1.327