• Previous Article
    Periodic orbits for double regularization of piecewise smooth systems with a switching manifold of codimension two
  • DCDS-B Home
  • This Issue
  • Next Article
    A Crank-Nicolson type minimization scheme for a hyperbolic free boundary problem
doi: 10.3934/dcdsb.2021095
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Nonconstant positive solutions to the ratio-dependent predator-prey system with prey-taxis in one dimension

1. 

School of Science, Chang'an University, Xi'an 710064, China

2. 

School of Mathematics and Statistics, Huaiyin Normal University, Huaian 223300, China

3. 

Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

* Corresponding author: Yongli Cai

Received  May 2020 Revised  December 2020 Early access March 2021

Fund Project: The authors thank all referees for their careful reading and valuable feedback leading to an improvement of this paper. This research of Q. Cao was supported by the Fundamental Research Funds for the Central Universities (300102120103). This research of Y. Cai was supported by the National Science Foundation of China (No. 61672013 and 12071173)

Resorting to M.G. Crandall and P.H. Rabinowitz's well-known bifurcation theory we first obtain the local structure of steady states concerning the ratio–dependent predator–prey system with prey-taxis in spatial one dimension, which bifurcate from the homogeneous coexistence steady states when treating the prey–tactic coefficient as a bifurcation parameter. Based on this, then the global structure of positive solution is established. Moreover, through asymptotic analysis and eigenvalue perturbation we find the stability criterion of such bifurcating steady states. Finally, several numerical simulations are performed to show the pattern formation.

Citation: Qian Cao, Yongli Cai, Yong Luo. Nonconstant positive solutions to the ratio-dependent predator-prey system with prey-taxis in one dimension. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021095
References:
[1]

B. AinsebaM. Bendahmane and A. Noussair, A reaction–diffusion system modeling predator–prey with prey-taxis, Nonlinear Analysis: Real World Applications, 9 (2008), 2086-2105.  doi: 10.1016/j.nonrwa.2007.06.017.  Google Scholar

[2]

H. R. AkcakayaR. Arditi and L. R. Ginzburg, Ratio-dependent predation: An abstraction that works, Ecology, 76 (1995), 995-1004.  doi: 10.2307/1939362.  Google Scholar

[3]

R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: Ratio-dependence, Journal of Theoretical Biology, 139 (1989), 311-326.   Google Scholar

[4]

R. ArditiL. R. Ginzburg and H. R. Akcakaya, Variation in plankton densities among lakes: a case for ratio-dependent predation models, The American Naturalist, 138 (1991), 1287-1296.   Google Scholar

[5]

J. Blat and K. J. Brown, Global bifurcation of positive solutions in some systems of elliptic equations, SIAM Journal on Mathematical Analysis, 17 (1986), 1339-1353.  doi: 10.1137/0517094.  Google Scholar

[6]

Y. Cai, Q. Cao and Z.-A. Wang, Asymptotic dynamics and spatial patterns of a ratio-dependent predator-prey system with prey-taxis, Applicable Analysis, 2020, 1–19. doi: 10.1080/00036811.2020.1728259.  Google Scholar

[7]

A. ChakrabortyM. SinghD. Lucy and P. Ridland, Predator-prey model with prey-taxis and diffusion, Mathematical and Computer Modelling, 46 (2007), 482-498.  doi: 10.1016/j.mcm.2006.10.010.  Google Scholar

[8]

C. CosnerD. L. DeAngelisJ. S. Ault and D. B. Olson, Effects of spatial grouping on the functional response of predators, Theoretical Population Biology, 56 (1999), 65-75.   Google Scholar

[9]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, Journal of Functional Analysis, 8 (1971), 321-340.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[10]

M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Archive for Rational Mechanics and Analysis, 52 (1973), 161-180.  doi: 10.1007/BF00282325.  Google Scholar

[11]

D. Grünbaum, Using spatially explicit models to characterize foraging performance in heterogeneous landscapes, The American Naturalist, 151 (1998), 97-113.  doi: 10.1086/286105.  Google Scholar

[12]

X. He and S. Zheng, Global boundedness of solutions in a reaction-diffusion system of predator-prey model with prey-taxis, Applied Mathematics Letters, 49 (2015), 73-77.  doi: 10.1016/j.aml.2015.04.017.  Google Scholar

[13]

M. Hui Wang and Mark Kot, Speeds of invasion in a model with strong or weak Allee effects, Mathematical Biosciences, 171 (2001), 83-97.  doi: 10.1016/S0025-5564(01)00048-7.  Google Scholar

[14]

J. JangW.-M. Ni and M. Tang, Global bifurcation and structure of Turing patterns in the 1-D Lengyel–Epstein model, Journal of Dynamics and Differential Equations, 16 (2004), 297-320.  doi: 10.1007/s10884-004-2782-x.  Google Scholar

[15]

H.-Y. Jin and Z.-A. Wang, Global stability of prey-taxis systems, Journal of Differential Equations, 262 (2017), 1257-1290.  doi: 10.1016/j.jde.2016.10.010.  Google Scholar

[16]

H.-Y. Jin and Z.-A. Wang, Global dynamics and spatio-temporal patterns of predator-prey systems with density-dependent motion, European Journal of Applied Mathematics, (2020). Google Scholar

[17]

P. Kareiva and G. Odell, Swarms of predators exhibit "preytaxis" if individual predators use area-restricted search, The American Naturalist, 130 (1987), 233-270.  doi: 10.1086/284707.  Google Scholar

[18]

J. M. LeeT. Hillen and M. A. Lewis, Continuous traveling waves for prey-taxis, Bulletin of Mathematical Biology, 70 (2008), 654-676.  doi: 10.1007/s11538-007-9271-4.  Google Scholar

[19]

J. M. LeeT. Hillen and M. A. Lewis, Pattern formation in prey-taxis systems, Journal of Biological Dynamics, 3 (2009), 551-573.  doi: 10.1080/17513750802716112.  Google Scholar

[20]

C. LiX. Wang and Y. Shao, Steady states of a predator-prey model with prey-taxis, Nonlinear Analysis: Theory, Methods & Applications, 97 (2014), 155-168.  doi: 10.1016/j.na.2013.11.022.  Google Scholar

[21]

M. MaC. Ou and Z.-A. Wang, Stationary solutions of a volume-filling chemotaxis model with logistic growth and their stability, SIAM Journal on Applied Mathematics, 72 (2012), 740-766.  doi: 10.1137/110843964.  Google Scholar

[22]

M. Ma and Z.-A. Wang, Global bifurcation and stability of steady states for a reaction-diffusion-chemotaxis model with volume-filling effect, Nonlinearity, 28 (2015), 2639-2660.  doi: 10.1088/0951-7715/28/8/2639.  Google Scholar

[23]

W. W. MurdochJ. Chesson and P. L. Chesson, Biological control in theory and practice, The American Naturalist, 125 (1985), 344-366.  doi: 10.1086/284347.  Google Scholar

[24]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, Journal of Functional Analysis, 7 (1971), 487-513.  doi: 10.1016/0022-1236(71)90030-9.  Google Scholar

[25]

M. L. Rosenzweig and R. H. MacArthur, Graphical representation and stability conditions of predator-prey interactions, The American Naturalist, 97 (1963), 209-223.  doi: 10.1086/282272.  Google Scholar

[26]

N. SapoukhinaY. Tyutyunov and R. Arditi, The role of prey taxis in biological control: A spatial theoretical model, The American Naturalist, 162 (2003), 61-76.  doi: 10.1086/375297.  Google Scholar

[27]

J. Shi and X. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, Journal of Differential Equations, 246 (2009), 2788-2812.  doi: 10.1016/j.jde.2008.09.009.  Google Scholar

[28]

Y. Tao, Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis, Nonlinear Analysis: Real World Applications, 11 (2010), 2056-2064.  doi: 10.1016/j.nonrwa.2009.05.005.  Google Scholar

[29]

Q. WangY. Song and L. Shao, Nonconstant positive steady states and pattern formation of 1-D prey-taxis systems, Journal of Nonlinear Science, 27 (2017), 71-97.  doi: 10.1007/s00332-016-9326-5.  Google Scholar

[30]

X. WangW. Wang and G. Zhang, Global bifurcation of solutions for a predator-prey model with prey-taxis, Mathematical Methods in the Applied Sciences, 38 (2015), 431-443.  doi: 10.1002/mma.3079.  Google Scholar

[31]

S. WuJ. Shi and B. Wu, Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, Journal of Differential Equations, 260 (2016), 5847-5874.  doi: 10.1016/j.jde.2015.12.024.  Google Scholar

[32]

K. Yosida, Functional Analysis, 4th edition, Springer, Berlin, Heidelberg, 1974.  Google Scholar

show all references

References:
[1]

B. AinsebaM. Bendahmane and A. Noussair, A reaction–diffusion system modeling predator–prey with prey-taxis, Nonlinear Analysis: Real World Applications, 9 (2008), 2086-2105.  doi: 10.1016/j.nonrwa.2007.06.017.  Google Scholar

[2]

H. R. AkcakayaR. Arditi and L. R. Ginzburg, Ratio-dependent predation: An abstraction that works, Ecology, 76 (1995), 995-1004.  doi: 10.2307/1939362.  Google Scholar

[3]

R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: Ratio-dependence, Journal of Theoretical Biology, 139 (1989), 311-326.   Google Scholar

[4]

R. ArditiL. R. Ginzburg and H. R. Akcakaya, Variation in plankton densities among lakes: a case for ratio-dependent predation models, The American Naturalist, 138 (1991), 1287-1296.   Google Scholar

[5]

J. Blat and K. J. Brown, Global bifurcation of positive solutions in some systems of elliptic equations, SIAM Journal on Mathematical Analysis, 17 (1986), 1339-1353.  doi: 10.1137/0517094.  Google Scholar

[6]

Y. Cai, Q. Cao and Z.-A. Wang, Asymptotic dynamics and spatial patterns of a ratio-dependent predator-prey system with prey-taxis, Applicable Analysis, 2020, 1–19. doi: 10.1080/00036811.2020.1728259.  Google Scholar

[7]

A. ChakrabortyM. SinghD. Lucy and P. Ridland, Predator-prey model with prey-taxis and diffusion, Mathematical and Computer Modelling, 46 (2007), 482-498.  doi: 10.1016/j.mcm.2006.10.010.  Google Scholar

[8]

C. CosnerD. L. DeAngelisJ. S. Ault and D. B. Olson, Effects of spatial grouping on the functional response of predators, Theoretical Population Biology, 56 (1999), 65-75.   Google Scholar

[9]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, Journal of Functional Analysis, 8 (1971), 321-340.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[10]

M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Archive for Rational Mechanics and Analysis, 52 (1973), 161-180.  doi: 10.1007/BF00282325.  Google Scholar

[11]

D. Grünbaum, Using spatially explicit models to characterize foraging performance in heterogeneous landscapes, The American Naturalist, 151 (1998), 97-113.  doi: 10.1086/286105.  Google Scholar

[12]

X. He and S. Zheng, Global boundedness of solutions in a reaction-diffusion system of predator-prey model with prey-taxis, Applied Mathematics Letters, 49 (2015), 73-77.  doi: 10.1016/j.aml.2015.04.017.  Google Scholar

[13]

M. Hui Wang and Mark Kot, Speeds of invasion in a model with strong or weak Allee effects, Mathematical Biosciences, 171 (2001), 83-97.  doi: 10.1016/S0025-5564(01)00048-7.  Google Scholar

[14]

J. JangW.-M. Ni and M. Tang, Global bifurcation and structure of Turing patterns in the 1-D Lengyel–Epstein model, Journal of Dynamics and Differential Equations, 16 (2004), 297-320.  doi: 10.1007/s10884-004-2782-x.  Google Scholar

[15]

H.-Y. Jin and Z.-A. Wang, Global stability of prey-taxis systems, Journal of Differential Equations, 262 (2017), 1257-1290.  doi: 10.1016/j.jde.2016.10.010.  Google Scholar

[16]

H.-Y. Jin and Z.-A. Wang, Global dynamics and spatio-temporal patterns of predator-prey systems with density-dependent motion, European Journal of Applied Mathematics, (2020). Google Scholar

[17]

P. Kareiva and G. Odell, Swarms of predators exhibit "preytaxis" if individual predators use area-restricted search, The American Naturalist, 130 (1987), 233-270.  doi: 10.1086/284707.  Google Scholar

[18]

J. M. LeeT. Hillen and M. A. Lewis, Continuous traveling waves for prey-taxis, Bulletin of Mathematical Biology, 70 (2008), 654-676.  doi: 10.1007/s11538-007-9271-4.  Google Scholar

[19]

J. M. LeeT. Hillen and M. A. Lewis, Pattern formation in prey-taxis systems, Journal of Biological Dynamics, 3 (2009), 551-573.  doi: 10.1080/17513750802716112.  Google Scholar

[20]

C. LiX. Wang and Y. Shao, Steady states of a predator-prey model with prey-taxis, Nonlinear Analysis: Theory, Methods & Applications, 97 (2014), 155-168.  doi: 10.1016/j.na.2013.11.022.  Google Scholar

[21]

M. MaC. Ou and Z.-A. Wang, Stationary solutions of a volume-filling chemotaxis model with logistic growth and their stability, SIAM Journal on Applied Mathematics, 72 (2012), 740-766.  doi: 10.1137/110843964.  Google Scholar

[22]

M. Ma and Z.-A. Wang, Global bifurcation and stability of steady states for a reaction-diffusion-chemotaxis model with volume-filling effect, Nonlinearity, 28 (2015), 2639-2660.  doi: 10.1088/0951-7715/28/8/2639.  Google Scholar

[23]

W. W. MurdochJ. Chesson and P. L. Chesson, Biological control in theory and practice, The American Naturalist, 125 (1985), 344-366.  doi: 10.1086/284347.  Google Scholar

[24]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, Journal of Functional Analysis, 7 (1971), 487-513.  doi: 10.1016/0022-1236(71)90030-9.  Google Scholar

[25]

M. L. Rosenzweig and R. H. MacArthur, Graphical representation and stability conditions of predator-prey interactions, The American Naturalist, 97 (1963), 209-223.  doi: 10.1086/282272.  Google Scholar

[26]

N. SapoukhinaY. Tyutyunov and R. Arditi, The role of prey taxis in biological control: A spatial theoretical model, The American Naturalist, 162 (2003), 61-76.  doi: 10.1086/375297.  Google Scholar

[27]

J. Shi and X. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, Journal of Differential Equations, 246 (2009), 2788-2812.  doi: 10.1016/j.jde.2008.09.009.  Google Scholar

[28]

Y. Tao, Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis, Nonlinear Analysis: Real World Applications, 11 (2010), 2056-2064.  doi: 10.1016/j.nonrwa.2009.05.005.  Google Scholar

[29]

Q. WangY. Song and L. Shao, Nonconstant positive steady states and pattern formation of 1-D prey-taxis systems, Journal of Nonlinear Science, 27 (2017), 71-97.  doi: 10.1007/s00332-016-9326-5.  Google Scholar

[30]

X. WangW. Wang and G. Zhang, Global bifurcation of solutions for a predator-prey model with prey-taxis, Mathematical Methods in the Applied Sciences, 38 (2015), 431-443.  doi: 10.1002/mma.3079.  Google Scholar

[31]

S. WuJ. Shi and B. Wu, Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, Journal of Differential Equations, 260 (2016), 5847-5874.  doi: 10.1016/j.jde.2015.12.024.  Google Scholar

[32]

K. Yosida, Functional Analysis, 4th edition, Springer, Berlin, Heidelberg, 1974.  Google Scholar

Figure 1.  Pattern formation of system (6) where $ x\in(0,100) $ with grid number 1000 and $ t \in(0, 8000) $ with grid number 1000
[1]

Jinfeng Wang, Sainan Wu, Junping Shi. Pattern formation in diffusive predator-prey systems with predator-taxis and prey-taxis. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1273-1289. doi: 10.3934/dcdsb.2020162

[2]

Evan C. Haskell, Jonathan Bell. Pattern formation in a predator-mediated coexistence model with prey-taxis. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 2895-2921. doi: 10.3934/dcdsb.2020045

[3]

Dan Li. Global stability in a multi-dimensional predator-prey system with prey-taxis. Discrete & Continuous Dynamical Systems, 2021, 41 (4) : 1681-1705. doi: 10.3934/dcds.2020337

[4]

Xinyu Song, Liming Cai, U. Neumann. Ratio-dependent predator-prey system with stage structure for prey. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 747-758. doi: 10.3934/dcdsb.2004.4.747

[5]

Xin Jiang, Zhikun She, Shigui Ruan. Global dynamics of a predator-prey system with density-dependent mortality and ratio-dependent functional response. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1967-1990. doi: 10.3934/dcdsb.2020041

[6]

H. Malchow, F.M. Hilker, S.V. Petrovskii. Noise and productivity dependence of spatiotemporal pattern formation in a prey-predator system. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 705-711. doi: 10.3934/dcdsb.2004.4.705

[7]

Canan Çelik. Dynamical behavior of a ratio dependent predator-prey system with distributed delay. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 719-738. doi: 10.3934/dcdsb.2011.16.719

[8]

Marcos Lizana, Julio Marín. On the dynamics of a ratio dependent Predator-Prey system with diffusion and delay. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1321-1338. doi: 10.3934/dcdsb.2006.6.1321

[9]

Inkyung Ahn, Wonlyul Ko, Kimun Ryu. Asymptotic behavior of a ratio-dependent predator-prey system with disease in the prey. Conference Publications, 2013, 2013 (special) : 11-19. doi: 10.3934/proc.2013.2013.11

[10]

Mostafa Fazly, Mahmoud Hesaaraki. Periodic solutions for a semi-ratio-dependent predator-prey dynamical system with a class of functional responses on time scales. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 267-279. doi: 10.3934/dcdsb.2008.9.267

[11]

Yujing Gao, Bingtuan Li. Dynamics of a ratio-dependent predator-prey system with a strong Allee effect. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2283-2313. doi: 10.3934/dcdsb.2013.18.2283

[12]

Zhicheng Wang, Jun Wu. Existence of positive periodic solutions for delayed ratio-dependent predator-prey system with stocking. Communications on Pure & Applied Analysis, 2006, 5 (3) : 423-433. doi: 10.3934/cpaa.2006.5.423

[13]

Benjamin Leard, Catherine Lewis, Jorge Rebaza. Dynamics of ratio-dependent Predator-Prey models with nonconstant harvesting. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 303-315. doi: 10.3934/dcdss.2008.1.303

[14]

Guoqiang Ren, Bin Liu. Global existence and convergence to steady states for a predator-prey model with both predator- and prey-taxis. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021136

[15]

Zhong Li, Maoan Han, Fengde Chen. Global stability of a predator-prey system with stage structure and mutual interference. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 173-187. doi: 10.3934/dcdsb.2014.19.173

[16]

Mostafa Bendahmane. Analysis of a reaction-diffusion system modeling predator-prey with prey-taxis. Networks & Heterogeneous Media, 2008, 3 (4) : 863-879. doi: 10.3934/nhm.2008.3.863

[17]

Wei Feng, Jody Hinson. Stability and pattern in two-patch predator-prey population dynamics. Conference Publications, 2005, 2005 (Special) : 268-279. doi: 10.3934/proc.2005.2005.268

[18]

Xiaoying Wang, Xingfu Zou. Pattern formation of a predator-prey model with the cost of anti-predator behaviors. Mathematical Biosciences & Engineering, 2018, 15 (3) : 775-805. doi: 10.3934/mbe.2018035

[19]

Prabir Panja, Soovoojeet Jana, Shyamal kumar Mondal. Dynamics of a stage structure prey-predator model with ratio-dependent functional response and anti-predator behavior of adult prey. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 391-405. doi: 10.3934/naco.2020033

[20]

Simone Fagioli, Yahya Jaafra. Multiple patterns formation for an aggregation/diffusion predator-prey system. Networks & Heterogeneous Media, 2021, 16 (3) : 377-411. doi: 10.3934/nhm.2021010

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (280)
  • HTML views (317)
  • Cited by (0)

Other articles
by authors

[Back to Top]