doi: 10.3934/dcdsb.2021101
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

A nonsmooth van der Pol-Duffing oscillator (II): The sum of indices of equilibria is $ 1 $

1. 

School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China

2. 

School of Mathematics and Statistics, HNP-LAMA, Central South University, Changsha, Hunan 410083, China

* Corresponding author: Hebai Chen

Received  October 2020 Early access March 2021

We continue to study the nonsmooth van der Pol-Duffing oscillator $ \dot{x} = y $, $ \dot{y} = a_1x+a_2x^3+b_1y+b_2|x|y $, where $ a_i, b_i $ are real and $ a_2b_2\neq0 $, $ i = 1, 2 $. Notice that the sum of indices of equilibria is $ -1 $ for $ a_2>0 $ and $ 1 $ for $ a_2<0 $. When $ a_2>0 $, the nonsmooth van der Pol-Duffing oscillator has been studied completely in the companion paper. Attention goes to the bifurcation diagram and all global phase portraits in the Poincaré disc of the nonsmooth van der Pol-Duffing oscillator for $ a_2<0 $ in this paper. The bifurcation diagram is more complex, which includes two Hopf bifurcation surfaces, one pitchfork bifurcation surface, one homoclinic bifurcation surface, one double limit cycle bifurcation surface and one bifurcation surface for equilibria at infinity. When $ b_2>0 $ is fixed, this nonsmooth van der Pol-Duffing oscillator cannot be changed into a near-Hamiltonian system for small $ a_1, b_1 $. Moreover, the global dynamics of the nonsmooth van der Pol-Duffing oscillator and the van der Pol-Duffing oscillator are different.

Citation: Zhaoxia Wang, Hebai Chen. A nonsmooth van der Pol-Duffing oscillator (II): The sum of indices of equilibria is $ 1 $. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021101
References:
[1]

M. BikdashB. Balachandran and A. H. Nayfeh, Melnikov analysis for a ship with a general Roll-damping model, Nonlinear Dyn., 6 (1994), 101-124.   Google Scholar

[2]

H. Chen and X. Chen, Global phase portraits of a degenerate Bogdanov-Takens system with symmetry (II), Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 4141-4170.  doi: 10.3934/dcdsb.2018130.  Google Scholar

[3]

H. ChenX. Chen and J. Xie, Global phase portrait of a degenerate Bogdanov-Takens system with symmetry, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1273-1293.  doi: 10.3934/dcdsb.2017062.  Google Scholar

[4]

H. Chen, Y. Tang and D. Xiao, Global dynamics of a quintic Liénard system with $\mathbb{Z}_2$-symmetry I: Saddle case, Nonlinearity, submitted. Google Scholar

[5] S.-N. ChowC. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge Univ. Press, New York, 1994.  doi: 10.1017/CBO9780511665639.  Google Scholar
[6]

J. F. Dalzell, A note on the form of ship roll damping, J. Ship Research, 22 (1978), 178-185.  doi: 10.5957/jsr.1978.22.3.178.  Google Scholar

[7]

F. Dumortier and C. Rousseau, Cubic Liénard equations with linear damping, Nonlinearity, 3 (1990), 1015-1039.  doi: 10.1088/0951-7715/3/4/004.  Google Scholar

[8]

J. K. Hale, Ordinary Differential Equations, Roberte. Kqieger Publishing Company, Huntington, New York, 1980.  Google Scholar

[9]

A. H. Nayfeh and B. Balachandran, Applied Nonlinear Dynamics. Analytical, Computational, and Experimental Methods, Wiley Series in Nonlinear Science. A, Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1995 doi: 10.1002/9783527617548.  Google Scholar

[10]

L. M. Perko, Differential Equations and Dynamical Systems, Springer, New York, 2002. doi: 10.1007/978-1-4613-0003-8.  Google Scholar

[11]

Y. Tang and W. Zhang, Generalized normal sectors and orbits in exceptional directions, Nonlinearity, 17 (2004), 1407-1426.  doi: 10.1088/0951-7715/17/4/015.  Google Scholar

[12]

Z. Wang and H. Chen, Nonsmooth van der Pol-Duffing oscillators: (I) The sum of indices of equilibria is $-1$, Discrete Contin. Dyn. Syst. Ser. B, to appear. Google Scholar

[13]

Z. F. Zhang, T. R. Ding, W. Z. Huang and Z. X. Dong, Qualitative Theory of Differential Equations, Transl. Math. Monogr. 101, Amer. Math. Soc., Providence, RI, 1992.  Google Scholar

show all references

References:
[1]

M. BikdashB. Balachandran and A. H. Nayfeh, Melnikov analysis for a ship with a general Roll-damping model, Nonlinear Dyn., 6 (1994), 101-124.   Google Scholar

[2]

H. Chen and X. Chen, Global phase portraits of a degenerate Bogdanov-Takens system with symmetry (II), Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 4141-4170.  doi: 10.3934/dcdsb.2018130.  Google Scholar

[3]

H. ChenX. Chen and J. Xie, Global phase portrait of a degenerate Bogdanov-Takens system with symmetry, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1273-1293.  doi: 10.3934/dcdsb.2017062.  Google Scholar

[4]

H. Chen, Y. Tang and D. Xiao, Global dynamics of a quintic Liénard system with $\mathbb{Z}_2$-symmetry I: Saddle case, Nonlinearity, submitted. Google Scholar

[5] S.-N. ChowC. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge Univ. Press, New York, 1994.  doi: 10.1017/CBO9780511665639.  Google Scholar
[6]

J. F. Dalzell, A note on the form of ship roll damping, J. Ship Research, 22 (1978), 178-185.  doi: 10.5957/jsr.1978.22.3.178.  Google Scholar

[7]

F. Dumortier and C. Rousseau, Cubic Liénard equations with linear damping, Nonlinearity, 3 (1990), 1015-1039.  doi: 10.1088/0951-7715/3/4/004.  Google Scholar

[8]

J. K. Hale, Ordinary Differential Equations, Roberte. Kqieger Publishing Company, Huntington, New York, 1980.  Google Scholar

[9]

A. H. Nayfeh and B. Balachandran, Applied Nonlinear Dynamics. Analytical, Computational, and Experimental Methods, Wiley Series in Nonlinear Science. A, Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1995 doi: 10.1002/9783527617548.  Google Scholar

[10]

L. M. Perko, Differential Equations and Dynamical Systems, Springer, New York, 2002. doi: 10.1007/978-1-4613-0003-8.  Google Scholar

[11]

Y. Tang and W. Zhang, Generalized normal sectors and orbits in exceptional directions, Nonlinearity, 17 (2004), 1407-1426.  doi: 10.1088/0951-7715/17/4/015.  Google Scholar

[12]

Z. Wang and H. Chen, Nonsmooth van der Pol-Duffing oscillators: (I) The sum of indices of equilibria is $-1$, Discrete Contin. Dyn. Syst. Ser. B, to appear. Google Scholar

[13]

Z. F. Zhang, T. R. Ding, W. Z. Huang and Z. X. Dong, Qualitative Theory of Differential Equations, Transl. Math. Monogr. 101, Amer. Math. Soc., Providence, RI, 1992.  Google Scholar

Figure 1.  The slice $ \mu_3 = {\mu_3}^{(1)}<2\sqrt{2} $ of the bifurcation diagram and corresponding global phase portraits
Figure 2.  The slice $ \mu_3 = {\mu_3}^{(2)}\ge2\sqrt{2} $ of the bifurcation diagram and corresponding global phase portraits
Figure 3.  Two possibilities of connections in $ S_3 $
Figure 4.  An orbit near $ E_0 $
Figure 5.  Dynamical behaviors near $ I_y^+ $ and $ I_y^- $
Figure 6.  Dynamical behaviors near $ D $
Figure 7.  Dynamical behaviors near infinity
Figure 8.  The orbit $ \Upsilon $ passing through $ (x_*, y_*) $
Figure 9.  Hypothetical limit cycles
Figure 10.  Two large limit cycles
Figure 11.  Unstable manifold in the right half plane of the origin
Figure 12.  Existence of the large limit cycle
Figure 13.  $ P $ is not in the region enclosed by $ \Gamma $
Figure 14.  $ P $ is in the region enclosed by $ \Gamma $
Figure 15.  Unstable and stable manifolds in the right half plane
Figure 16.  Numerical phase portraits with one equilibrium when $ \mu_1 = -4 $ and $ \mu_3 = 1 $
Figure 17.  Numerical phase portraits with one equilibrium when $ \mu_1 = 0 $ and $ \mu_3 = 1 $
Figure 18.  Numerical phase portraits with three equilibrium when $ \mu_1 = 4 $ and $ \mu_3 = 1 $
Table 1.  Properties of $ E_0 $, $ E_l $ and $ E_r $
possibilities of $ (\mu_1, \mu_2) $types and stabilities
$ \mu_1> 0 $, $ \mu_2<(\mu_3-2\sqrt{2})\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ stable bidirectional nodes
$ \mu_1> 0 $, $ \mu_2 = (\mu_3-2\sqrt{2})\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ stable unidirectional nodes
$ \mu_1> 0 $, $ (\mu_3-2\sqrt{2})\sqrt{\mu_1}<\mu_2<\mu_3\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ stable rough foci
$ \mu_1> 0 $, $ \mu_2 = \mu_3\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ unstable weak foci
$ \mu_1> 0 $, $ \mu_3\sqrt{\mu_1}<\mu_2<(\mu_3+2\sqrt{2})\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ unstable rough foci
$ \mu_1> 0 $, $ \mu_2 = (\mu_3+2\sqrt{2})\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ unstable unidirectional nodes
$ \mu_1> 0 $, $ \mu_2>(\mu_3+2\sqrt{2})\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ unstable bidirectional nodes
possibilities of $ (\mu_1, \mu_2) $types and stabilities
$ \mu_1> 0 $, $ \mu_2<(\mu_3-2\sqrt{2})\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ stable bidirectional nodes
$ \mu_1> 0 $, $ \mu_2 = (\mu_3-2\sqrt{2})\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ stable unidirectional nodes
$ \mu_1> 0 $, $ (\mu_3-2\sqrt{2})\sqrt{\mu_1}<\mu_2<\mu_3\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ stable rough foci
$ \mu_1> 0 $, $ \mu_2 = \mu_3\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ unstable weak foci
$ \mu_1> 0 $, $ \mu_3\sqrt{\mu_1}<\mu_2<(\mu_3+2\sqrt{2})\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ unstable rough foci
$ \mu_1> 0 $, $ \mu_2 = (\mu_3+2\sqrt{2})\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ unstable unidirectional nodes
$ \mu_1> 0 $, $ \mu_2>(\mu_3+2\sqrt{2})\sqrt{\mu_1} $$ E_0 $ saddle; $ E_l $, $ E_r $ unstable bidirectional nodes
Table 2.  Properties of $ E_0 $
possibilities of $ (\mu_1, \mu_2) $types and stabilities
$ \mu_2<0 $$ E_0 $ stable degenerate node
$ \mu_1 = 0 $$ \mu_2 = 0 $$ E_0 $ stable nilpotent focus
$ \mu_2>0 $$ E_0 $ unstable degenerate node
$ \mu_2<-2\sqrt{-\mu_1} $$ E_0 $ stable bidirectional node
$ \mu_2 = -2\sqrt{-\mu_1} $$ E_0 $ stable unidirectional node
$ -2\sqrt{-\mu_1}<\mu_2<0 $$ E_0 $ stable rough focus
$ \mu_1< 0 $$ \mu_2 = 0 $$ E_0 $ stable weak focus
$ 0<\mu_2<2\sqrt{-\mu_1} $$ E_0 $ unstable rough focus
$ \mu_2 = 2\sqrt{-\mu_1} $$ E_0 $ unstable unidirectional node
$ \mu_2>2\sqrt{-\mu_1} $$ E_0 $ unstable bidirectional node
possibilities of $ (\mu_1, \mu_2) $types and stabilities
$ \mu_2<0 $$ E_0 $ stable degenerate node
$ \mu_1 = 0 $$ \mu_2 = 0 $$ E_0 $ stable nilpotent focus
$ \mu_2>0 $$ E_0 $ unstable degenerate node
$ \mu_2<-2\sqrt{-\mu_1} $$ E_0 $ stable bidirectional node
$ \mu_2 = -2\sqrt{-\mu_1} $$ E_0 $ stable unidirectional node
$ -2\sqrt{-\mu_1}<\mu_2<0 $$ E_0 $ stable rough focus
$ \mu_1< 0 $$ \mu_2 = 0 $$ E_0 $ stable weak focus
$ 0<\mu_2<2\sqrt{-\mu_1} $$ E_0 $ unstable rough focus
$ \mu_2 = 2\sqrt{-\mu_1} $$ E_0 $ unstable unidirectional node
$ \mu_2>2\sqrt{-\mu_1} $$ E_0 $ unstable bidirectional node
[1]

Zhaoxia Wang, Hebai Chen. A nonsmooth van der Pol-Duffing oscillator (I): The sum of indices of equilibria is $ -1 $. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021096

[2]

Xiaoqin P. Wu, Liancheng Wang. Hopf bifurcation of a class of two coupled relaxation oscillators of the van der Pol type with delay. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 503-516. doi: 10.3934/dcdsb.2010.13.503

[3]

Zhaosheng Feng. Duffing-van der Pol-type oscillator systems. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1231-1257. doi: 10.3934/dcdss.2014.7.1231

[4]

Stefan Siegmund. Normal form of Duffing-van der Pol oscillator under nonautonomous parametric perturbations. Conference Publications, 2001, 2001 (Special) : 357-361. doi: 10.3934/proc.2001.2001.357

[5]

Zhaosheng Feng, Guangyue Gao, Jing Cui. Duffing--van der Pol--type oscillator system and its first integrals. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1377-1391. doi: 10.3934/cpaa.2011.10.1377

[6]

John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete & Continuous Dynamical Systems, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805

[7]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

[8]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[9]

Pablo Aguirre, Bernd Krauskopf, Hinke M. Osinga. Global invariant manifolds near a Shilnikov homoclinic bifurcation. Journal of Computational Dynamics, 2014, 1 (1) : 1-38. doi: 10.3934/jcd.2014.1.1

[10]

S. Secchi, C. A. Stuart. Global bifurcation of homoclinic solutions of Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2003, 9 (6) : 1493-1518. doi: 10.3934/dcds.2003.9.1493

[11]

Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete & Continuous Dynamical Systems, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997

[12]

Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045

[13]

Jixun Chu, Pierre Magal. Hopf bifurcation for a size-structured model with resting phase. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 4891-4921. doi: 10.3934/dcds.2013.33.4891

[14]

Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325

[15]

Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 973-993. doi: 10.3934/dcdss.2017051

[16]

Hooton Edward, Balanov Zalman, Krawcewicz Wieslaw, Rachinskii Dmitrii. Sliding Hopf bifurcation in interval systems. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 3545-3566. doi: 10.3934/dcds.2017152

[17]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[18]

Zhiqin Qiao, Deming Zhu, Qiuying Lu. Bifurcation of a heterodimensional cycle with weak inclination flip. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 1009-1025. doi: 10.3934/dcdsb.2012.17.1009

[19]

Bourama Toni. Upper bounds for limit cycle bifurcation from an isochronous period annulus via a birational linearization. Conference Publications, 2005, 2005 (Special) : 846-853. doi: 10.3934/proc.2005.2005.846

[20]

Qiongwei Huang, Jiashi Tang. Bifurcation of a limit cycle in the ac-driven complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 129-141. doi: 10.3934/dcdsb.2010.14.129

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (190)
  • HTML views (286)
  • Cited by (0)

Other articles
by authors

[Back to Top]