• Previous Article
    Existence of finite time blow-up solutions in a normal form of the subcritical Hopf bifurcation with time-delayed feedback for small initial functions
  • DCDS-B Home
  • This Issue
  • Next Article
    A computational modular approach to evaluate $ {\mathrm{NO_{x}}} $ emissions and ozone production due to vehicular traffic
doi: 10.3934/dcdsb.2021111
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Phase transitions of the SIR Rumor spreading model with a variable trust rate

1. 

Department of Applied Mathematics and the Institute of Natural Sciences, Kyung Hee University, Yongin, 446-701, South Korea

2. 

National Institute for Mathematical Sciences, Daejeon, 34047, South Korea

* Corresponding author: Hyowon Seo

Received  November 2020 Early access April 2021

We study a threshold phenomenon of rumor outbreak on the SIR rumor spreading model with a variable trust rate depending on the populations of ignorants and spreaders. Rumor outbreak in the SIR rumor spreading model is defined as a persistence of the final rumor size in the large population limit or thermodynamics limit $ (n\to \infty) $, where $ 1/n $ is the initial population of spreaders. We present a rigorous proof for the existence of threshold on the final size of the rumor with respect to the basic reproduction number $ \mathcal{R}_0 $. Moreover, we prove that a phase transition phenomenon occurs for the final size of the rumor (as an order parameter) with respect to the basic reproduction number and provide a criterion to determine whether the phase transition is of first or second order. Precisely, we prove that there is a critical number $ \mathcal{R}_1 $ such that if $ \mathcal{R}_1>1 $, then the phase transition is of the first order, i.e., the limit of the final size is not a continuous function with respect to $ \mathcal{R}_0 $. The discontinuity is a jump-type discontinuity and it occurs only at $ \mathcal{R}_0 = 1 $. If $ \mathcal{R}_1<1 $, then the phase transition is second order, i.e., the limit of the final size is continuous with respect to $ \mathcal{R}_0 $ and its derivative exists, except at $ \mathcal{R}_0 = 1 $, and the derivative is not continuous at $ \mathcal{R}_0 = 1 $. We also present numerical simulations to demonstrate our analytical results for the threshold phenomena and phase transition order criterion.

Citation: Sun-Ho Choi, Hyowon Seo, Minha Yoo. Phase transitions of the SIR Rumor spreading model with a variable trust rate. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021111
References:
[1]

V. Capasso and G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model, Mathematical Biosciences, 42 (1978), 43-61.  doi: 10.1016/0025-5564(78)90006-8.  Google Scholar

[2]

D.J. Daley and D. G. Kendall, Epidemics and rumours, Nature, 204 (1964), 1118. doi: 10.1038/2041118a0.  Google Scholar

[3]

D. J. Daley and D. G. Kendall, Stochastic rumours, IMA Journal of Applied Mathematics, 1 (1965), 42-55.  doi: 10.1093/imamat/1.1.42.  Google Scholar

[4]

T. H. Gronwall, Note on the derivatives with respect to a parameter of the solutions of a system of differential equations, Annals of Mathematics, 20 (1919), 292-296.  doi: 10.2307/1967124.  Google Scholar

[5]

K. HattafN. Yousfi and A. Tridane, Mathematical analysis of a virus dynamics model with general incidence rate and cure rate, Nonlinear Analysis: Real World Applications, 13 (2012), 1866-1872.  doi: 10.1016/j.nonrwa.2011.12.015.  Google Scholar

[6]

B. I. HongN. Hahm and S.-H. Choi, SIR rumor spreading model with trust rate distribution, Netwworks & Heterogeneous Media, 13 (2018), 515-530.  doi: 10.3934/nhm.2018023.  Google Scholar

[7]

A. Mavragani and G. Ochoa, The internet and the anti-vaccine movement: Tracking the 2017 EU measles outbreak, Big Data and Cognitive Computing, 2 (2018), 2. doi: 10.3390/bdcc2010002.  Google Scholar

[8]

Y. MorenoR. Pastor-Satorras and A. Vespignani, Epidemic outbreaks in complex heterogeneous networks, The European Physical Journal B-Condensed Matter and Complex Systems, 26 (2002), 521-529.  doi: 10.1140/epjb/e20020122.  Google Scholar

[9]

J. D. Murray, Mathematical Biology, Springer Verlag, Berlin, 1993. doi: 10.1007/b98869.  Google Scholar

[10]

M. NekoveeY. MorenoG. Bianconi and M. Marsili, Theory of rumour spreading in complex social networks, Physica A: Statistical Mechanics and its Applications, 374 (2007), 457-470.  doi: 10.1016/j.physa.2006.07.017.  Google Scholar

[11]

J. K. Olive, P. J. Hotez, A. Damania and M. S. Nolan, The state of the antivaccine movement in the United States: A focused examination of nonmedical exemptions in states and counties, PLoS medicine, 15 (2018), e1002578. doi: 10.1371/journal.pmed.1002578.  Google Scholar

[12]

M. V. Pezzo and J. W. Beckstead, A multilevel analysis of rumor transmission: Effects of anxiety and belief in two field experiments, Basic and Applied Social Psychology, 28 (2006), 91-100.  doi: 10.1207/s15324834basp2801_8.  Google Scholar

[13]

R. Pastor-Satorras, C. Castellano, P. Van Mieghem and A. Vespignani, Epidemic processes in complex networks, Reviews of Modern Physics, 87 (2015), 925. doi: 10.1103/RevModPhys.87.925.  Google Scholar

[14]

C. WangZ. X. TanY. YeL. WangK. H. Cheong and N. G. Xie, A rumor spreading model based on information entropy, Scientific reports, 7 (2017), 1-14.  doi: 10.1038/s41598-017-09171-8.  Google Scholar

[15]

Y.-Q. WangX.-Y. YangY.-L Han and X.-A. Wang, Rumor spreading model with trust mechanism in complex social networks, Communications in Theoretical Physics, 59 (2013), 510-516.  doi: 10.1088/0253-6102/59/4/21.  Google Scholar

[16]

D. B. WrightK. London and M. Waechter, Social anxiety moderates memory conformity in adolescents, Applied Cognitive Psychology, 24 (2010), 1034-1045.  doi: 10.1002/acp.1604.  Google Scholar

[17]

D. Xiao and S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate, Mathematical Biosciences, 208 (2007), 419-429.  doi: 10.1016/j.mbs.2006.09.025.  Google Scholar

[18]

Y. ZanJ. WuP. Li and Q. Yu, SICR rumor spreading model in complex networks: Counterattack and self-resistance, Physica A: Statistical Mechanics and its Applications, 405 (2014), 159-170.  doi: 10.1016/j.physa.2014.03.021.  Google Scholar

[19]

L. ZhaoJ. WangY. ChenQ. WangJ. Cheng and H. Cui, SIHR rumor spreading model in social networks, Physica A: Statistical Mechanics and its Applications, 391 (2012), 2444-2453.  doi: 10.1016/j.physa.2011.12.008.  Google Scholar

[20]

L. ZhaoH. CuiX. QiuX. Wang and J. Wang, SIR rumor spreading model in the new media age, Physica A: Statistical Mechanics and its Applications, 392 (2013), 995-1003.  doi: 10.1016/j.physa.2012.09.030.  Google Scholar

show all references

References:
[1]

V. Capasso and G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model, Mathematical Biosciences, 42 (1978), 43-61.  doi: 10.1016/0025-5564(78)90006-8.  Google Scholar

[2]

D.J. Daley and D. G. Kendall, Epidemics and rumours, Nature, 204 (1964), 1118. doi: 10.1038/2041118a0.  Google Scholar

[3]

D. J. Daley and D. G. Kendall, Stochastic rumours, IMA Journal of Applied Mathematics, 1 (1965), 42-55.  doi: 10.1093/imamat/1.1.42.  Google Scholar

[4]

T. H. Gronwall, Note on the derivatives with respect to a parameter of the solutions of a system of differential equations, Annals of Mathematics, 20 (1919), 292-296.  doi: 10.2307/1967124.  Google Scholar

[5]

K. HattafN. Yousfi and A. Tridane, Mathematical analysis of a virus dynamics model with general incidence rate and cure rate, Nonlinear Analysis: Real World Applications, 13 (2012), 1866-1872.  doi: 10.1016/j.nonrwa.2011.12.015.  Google Scholar

[6]

B. I. HongN. Hahm and S.-H. Choi, SIR rumor spreading model with trust rate distribution, Netwworks & Heterogeneous Media, 13 (2018), 515-530.  doi: 10.3934/nhm.2018023.  Google Scholar

[7]

A. Mavragani and G. Ochoa, The internet and the anti-vaccine movement: Tracking the 2017 EU measles outbreak, Big Data and Cognitive Computing, 2 (2018), 2. doi: 10.3390/bdcc2010002.  Google Scholar

[8]

Y. MorenoR. Pastor-Satorras and A. Vespignani, Epidemic outbreaks in complex heterogeneous networks, The European Physical Journal B-Condensed Matter and Complex Systems, 26 (2002), 521-529.  doi: 10.1140/epjb/e20020122.  Google Scholar

[9]

J. D. Murray, Mathematical Biology, Springer Verlag, Berlin, 1993. doi: 10.1007/b98869.  Google Scholar

[10]

M. NekoveeY. MorenoG. Bianconi and M. Marsili, Theory of rumour spreading in complex social networks, Physica A: Statistical Mechanics and its Applications, 374 (2007), 457-470.  doi: 10.1016/j.physa.2006.07.017.  Google Scholar

[11]

J. K. Olive, P. J. Hotez, A. Damania and M. S. Nolan, The state of the antivaccine movement in the United States: A focused examination of nonmedical exemptions in states and counties, PLoS medicine, 15 (2018), e1002578. doi: 10.1371/journal.pmed.1002578.  Google Scholar

[12]

M. V. Pezzo and J. W. Beckstead, A multilevel analysis of rumor transmission: Effects of anxiety and belief in two field experiments, Basic and Applied Social Psychology, 28 (2006), 91-100.  doi: 10.1207/s15324834basp2801_8.  Google Scholar

[13]

R. Pastor-Satorras, C. Castellano, P. Van Mieghem and A. Vespignani, Epidemic processes in complex networks, Reviews of Modern Physics, 87 (2015), 925. doi: 10.1103/RevModPhys.87.925.  Google Scholar

[14]

C. WangZ. X. TanY. YeL. WangK. H. Cheong and N. G. Xie, A rumor spreading model based on information entropy, Scientific reports, 7 (2017), 1-14.  doi: 10.1038/s41598-017-09171-8.  Google Scholar

[15]

Y.-Q. WangX.-Y. YangY.-L Han and X.-A. Wang, Rumor spreading model with trust mechanism in complex social networks, Communications in Theoretical Physics, 59 (2013), 510-516.  doi: 10.1088/0253-6102/59/4/21.  Google Scholar

[16]

D. B. WrightK. London and M. Waechter, Social anxiety moderates memory conformity in adolescents, Applied Cognitive Psychology, 24 (2010), 1034-1045.  doi: 10.1002/acp.1604.  Google Scholar

[17]

D. Xiao and S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate, Mathematical Biosciences, 208 (2007), 419-429.  doi: 10.1016/j.mbs.2006.09.025.  Google Scholar

[18]

Y. ZanJ. WuP. Li and Q. Yu, SICR rumor spreading model in complex networks: Counterattack and self-resistance, Physica A: Statistical Mechanics and its Applications, 405 (2014), 159-170.  doi: 10.1016/j.physa.2014.03.021.  Google Scholar

[19]

L. ZhaoJ. WangY. ChenQ. WangJ. Cheng and H. Cui, SIHR rumor spreading model in social networks, Physica A: Statistical Mechanics and its Applications, 391 (2012), 2444-2453.  doi: 10.1016/j.physa.2011.12.008.  Google Scholar

[20]

L. ZhaoH. CuiX. QiuX. Wang and J. Wang, SIR rumor spreading model in the new media age, Physica A: Statistical Mechanics and its Applications, 392 (2013), 995-1003.  doi: 10.1016/j.physa.2012.09.030.  Google Scholar

Figure 1.  Time evolutions of $ (I(t), S(t), R(t)) $ with initial data (4.1) when $ \mathcal{R}_0 = 0.5 $
Figure 2.  Time evolutions of $ (I(t), S(t), R(t)) $ with initial data (4.1) when $ \mathcal{R}_0 = 2 $
Figure 3.  Numerical simulations for $ \phi^\infty_n $ when $ T = 10^4 $
Figure 4.  Numerical simulations for $ \phi^\infty_n $ when $ T = 10^6 $
Figure 5.  Phase transition diagrams for $ \phi^e $ when $ n = 10^{10} $ and final time $ T = 10^6 $
Figure 6.  Phase portrait for $ \sigma_R>\sigma_S $ or $ \lambda_S^0>0 $
[1]

Bum Il Hong, Nahmwoo Hahm, Sun-Ho Choi. SIR Rumor spreading model with trust rate distribution. Networks & Heterogeneous Media, 2018, 13 (3) : 515-530. doi: 10.3934/nhm.2018023

[2]

Sun-Ho Choi, Hyowon Seo, Minha Yoo. A multi-stage SIR model for rumor spreading. Discrete & Continuous Dynamical Systems - B, 2020, 25 (6) : 2351-2372. doi: 10.3934/dcdsb.2020124

[3]

Jinxian Li, Ning Ren, Zhen Jin. An SICR rumor spreading model in heterogeneous networks. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1497-1515. doi: 10.3934/dcdsb.2019237

[4]

Ulisse Stefanelli. Analysis of a variable time-step discretization for a phase transition model with micro-movements. Communications on Pure & Applied Analysis, 2006, 5 (3) : 659-673. doi: 10.3934/cpaa.2006.5.659

[5]

Min Zhu, Xiaofei Guo, Zhigui Lin. The risk index for an SIR epidemic model and spatial spreading of the infectious disease. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1565-1583. doi: 10.3934/mbe.2017081

[6]

Jun Yang. Coexistence phenomenon of concentration and transition of an inhomogeneous phase transition model on surfaces. Discrete & Continuous Dynamical Systems, 2011, 30 (3) : 965-994. doi: 10.3934/dcds.2011.30.965

[7]

Pavel Krejčí, Jürgen Sprekels. Long time behaviour of a singular phase transition model. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1119-1135. doi: 10.3934/dcds.2006.15.1119

[8]

Mauro Garavello. Boundary value problem for a phase transition model. Networks & Heterogeneous Media, 2016, 11 (1) : 89-105. doi: 10.3934/nhm.2016.11.89

[9]

Mauro Garavello, Francesca Marcellini. The Riemann Problem at a Junction for a Phase Transition Traffic Model. Discrete & Continuous Dynamical Systems, 2017, 37 (10) : 5191-5209. doi: 10.3934/dcds.2017225

[10]

Wanbiao Ma, Yasuhiro Takeuchi. Asymptotic properties of a delayed SIR epidemic model with density dependent birth rate. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 671-678. doi: 10.3934/dcdsb.2004.4.671

[11]

Pierluigi Colli, Antonio Segatti. Uniform attractors for a phase transition model coupling momentum balance and phase dynamics. Discrete & Continuous Dynamical Systems, 2008, 22 (4) : 909-932. doi: 10.3934/dcds.2008.22.909

[12]

Sun-Ho Choi, Hyowon Seo. Rumor spreading dynamics with an online reservoir and its asymptotic stability. Networks & Heterogeneous Media, 2021, 16 (4) : 535-552. doi: 10.3934/nhm.2021016

[13]

Francesca Marcellini. Existence of solutions to a boundary value problem for a phase transition traffic model. Networks & Heterogeneous Media, 2017, 12 (2) : 259-275. doi: 10.3934/nhm.2017011

[14]

Kousuke Kuto, Tohru Tsujikawa. Stationary patterns for an adsorbate-induced phase transition model I: Existence. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1105-1117. doi: 10.3934/dcdsb.2010.14.1105

[15]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems, 2021, 41 (9) : 4255-4281. doi: 10.3934/dcds.2021035

[16]

Alberto Bressan, Marco Mazzola, Hongxu Wei. A dynamic model of the limit order book. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1015-1041. doi: 10.3934/dcdsb.2019206

[17]

Young-Pil Choi, Samir Salem. Cucker-Smale flocking particles with multiplicative noises: Stochastic mean-field limit and phase transition. Kinetic & Related Models, 2019, 12 (3) : 573-592. doi: 10.3934/krm.2019023

[18]

Jinling Zhou, Yu Yang. Traveling waves for a nonlocal dispersal SIR model with general nonlinear incidence rate and spatio-temporal delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1719-1741. doi: 10.3934/dcdsb.2017082

[19]

Marie Henry. Singular limit of an activator-inhibitor type model. Networks & Heterogeneous Media, 2012, 7 (4) : 781-803. doi: 10.3934/nhm.2012.7.781

[20]

Matteo Novaga, Enrico Valdinoci. The geometry of mesoscopic phase transition interfaces. Discrete & Continuous Dynamical Systems, 2007, 19 (4) : 777-798. doi: 10.3934/dcds.2007.19.777

2020 Impact Factor: 1.327

Article outline

Figures and Tables

[Back to Top]