# American Institute of Mathematical Sciences

• Previous Article
A delayed dynamical model for COVID-19 therapy with defective interfering particles and artificial antibodies
• DCDS-B Home
• This Issue
• Next Article
Energy equality for weak solutions to the 3D magnetohydrodynamic equations in a bounded domain
doi: 10.3934/dcdsb.2021125
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

## Singular function emerging from one-dimensional elementary cellular automaton Rule 150

 Department of Mathematics, Kyoto University of Education, Kyoto, 612-8522, Japan

Received  October 2020 Revised  March 2021 Early access April 2021

This paper presents a singular function on the unit interval $[0, 1]$ derived from the dynamics of one-dimensional elementary cellular automaton Rule $150$. We describe the properties of the resulting function, which is strictly increasing, uniformly continuous, and differentiable almost everywhere, and show that it is not differentiable at dyadic rational points. We also derive functional equations that this function satisfies and show that this function is the only solution of the functional equations.

Citation: Akane Kawaharada. Singular function emerging from one-dimensional elementary cellular automaton Rule 150. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021125
##### References:

show all references

##### References:
Spatio-temporal pattern of Rule $150$, $\{T_{150} x_o\}_{n = 0}^{31}$
Limit set of Rule $150$ from the single site seed $x_o$
$\{cum_{150}(n)\}$ of Rule $150$ for $0 \leq n < 256$
$F(x)$ and the limit set of Rule $150$
Local rule of Rule $150$
 $x_{i-1} x_i x_{i+1}$ $111$ $110$ $101$ $100$ $011$ $010$ $001$ $000$ $(T_{150} x)_i$ $1$ $0$ $0$ $1$ $0$ $1$ $1$ $0$
 $x_{i-1} x_i x_{i+1}$ $111$ $110$ $101$ $100$ $011$ $010$ $001$ $000$ $(T_{150} x)_i$ $1$ $0$ $0$ $1$ $0$ $1$ $1$ $0$
 [1] Petr Kůrka. On the measure attractor of a cellular automaton. Conference Publications, 2005, 2005 (Special) : 524-535. doi: 10.3934/proc.2005.2005.524 [2] Gelasio Salaza, Edgardo Ugalde, Jesús Urías. Master--slave synchronization of affine cellular automaton pairs. Discrete & Continuous Dynamical Systems, 2005, 13 (2) : 491-502. doi: 10.3934/dcds.2005.13.491 [3] Yusra Bibi Ruhomally, Muhammad Zaid Dauhoo, Laurent Dumas. A graph cellular automaton with relation-based neighbourhood describing the impact of peer influence on the consumption of marijuana among college-aged youths. Journal of Dynamics & Games, 2021, 8 (3) : 277-297. doi: 10.3934/jdg.2021011 [4] Hasib Khan, Cemil Tunc, Aziz Khan. Green function's properties and existence theorems for nonlinear singular-delay-fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (9) : 2475-2487. doi: 10.3934/dcdss.2020139 [5] Seick Kim, Longjuan Xu. Green's function for second order parabolic equations with singular lower order coefficients. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021164 [6] Manuel Fernández-Martínez. Theoretical properties of fractal dimensions for fractal structures. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1113-1128. doi: 10.3934/dcdss.2015.8.1113 [7] T.K. Subrahmonian Moothathu. Homogeneity of surjective cellular automata. Discrete & Continuous Dynamical Systems, 2005, 13 (1) : 195-202. doi: 10.3934/dcds.2005.13.195 [8] Uta Renata Freiberg. Einstein relation on fractal objects. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 509-525. doi: 10.3934/dcdsb.2012.17.509 [9] Achilles Beros, Monique Chyba, Oleksandr Markovichenko. Controlled cellular automata. Networks & Heterogeneous Media, 2019, 14 (1) : 1-22. doi: 10.3934/nhm.2019001 [10] Umberto Mosco, Maria Agostina Vivaldi. Vanishing viscosity for fractal sets. Discrete & Continuous Dynamical Systems, 2010, 28 (3) : 1207-1235. doi: 10.3934/dcds.2010.28.1207 [11] Michael L. Frankel, Victor Roytburd. Fractal dimension of attractors for a Stefan problem. Conference Publications, 2003, 2003 (Special) : 281-287. doi: 10.3934/proc.2003.2003.281 [12] Marcus Pivato. Invariant measures for bipermutative cellular automata. Discrete & Continuous Dynamical Systems, 2005, 12 (4) : 723-736. doi: 10.3934/dcds.2005.12.723 [13] Yongjie Wang, Nan Gao. Some properties for almost cellular algebras. Electronic Research Archive, 2021, 29 (1) : 1681-1689. doi: 10.3934/era.2020086 [14] Palle E. T. Jorgensen and Steen Pedersen. Orthogonal harmonic analysis of fractal measures. Electronic Research Announcements, 1998, 4: 35-42. [15] Oliver Penrose, John W. Cahn. On the mathematical modelling of cellular (discontinuous) precipitation. Discrete & Continuous Dynamical Systems, 2017, 37 (2) : 963-982. doi: 10.3934/dcds.2017040 [16] Eduardo Ibarguen-Mondragon, Lourdes Esteva, Leslie Chávez-Galán. A mathematical model for cellular immunology of tuberculosis. Mathematical Biosciences & Engineering, 2011, 8 (4) : 973-986. doi: 10.3934/mbe.2011.8.973 [17] Abdon Atangana, Ali Akgül. On solutions of fractal fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3441-3457. doi: 10.3934/dcdss.2020421 [18] Claude-Michel Brauner, Michael L. Frankel, Josephus Hulshof, Alessandra Lunardi, G. Sivashinsky. On the κ - θ model of cellular flames: Existence in the large and asymptotics. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 27-39. doi: 10.3934/dcdss.2008.1.27 [19] Michael Hochman. Lectures on dynamics, fractal geometry, and metric number theory. Journal of Modern Dynamics, 2014, 8 (3&4) : 437-497. doi: 10.3934/jmd.2014.8.437 [20] Raffaela Capitanelli, Maria Agostina Vivaldi. Uniform weighted estimates on pre-fractal domains. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1969-1985. doi: 10.3934/dcdsb.2014.19.1969

2020 Impact Factor: 1.327