# American Institute of Mathematical Sciences

November  2021, 26(11): 5999-6015. doi: 10.3934/dcdsb.2021143

## A three-country Kaldorian business cycle model with fixed exchange rates: A continuous time analysis

 1 Department of Quantitative Methods and Informatics, Faculty of Economics, Matej Bel University, Tajovského 10,975 50 Banská Bystrica, Slovakia 2 Department of Mathematical Analysis and Numerical Mathematics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina F1, 84 248 Bratislava, Slovakia 3 Faculty of Economics, Chuo University, 742-1 Higashinakano, Tokyo 192-0393, Japan 4 School of Education, Waseda University, 1-6-1 Nishiwaseda, Shinjuku, Tokyo 169-8050, Japan

* Corresponding author: Rudolf Zimka

Received  March 2021 Revised  September 2020 Published  November 2021 Early access  May 2021

This paper analyses a three-country, fixed exchange rates Kaldorian nonlinear macroeconomic model of business cycles. The countries are connected through international trade, and international capital movement with imperfect capital mobility. Our model is a continuous time version of the discrete time three-country Kaldorian model of Inaba and Asada [22]. Their paper provided numerical studies of the dynamics of the three countries under fixed exchange rates. This paper provides analytical examinations of the local stability of the model´s equilibria, and of the existence of business cycles. The results are illustrated by numerical simulations.

Citation: Rudolf Zimka, Michal Demetrian, Toichiro Asada, Toshio Inaba. A three-country Kaldorian business cycle model with fixed exchange rates: A continuous time analysis. Discrete & Continuous Dynamical Systems - B, 2021, 26 (11) : 5999-6015. doi: 10.3934/dcdsb.2021143
##### References:
 [1] T. Asada, Kaldorian dynamics in an open economy, J. Econ., 62 (1995), 239-269.  doi: 10.1007/BF01238819.  Google Scholar [2] T. Asada, A two-regional model of business cycles with fixed exchange rates : A Kaldorian approach, Studies in Regional Sciences, 34 (2004), 19-38.  doi: 10.2457/srs.34.2_19.  Google Scholar [3] T. Asada, C. Chiarella, P. Flaschel and R. Franke, Open Economy Macrodynamics: An Integrated Disequilibrium Approach, Springer-Verlag, Berlin, 2003. Google Scholar [4] T. Asada, C. Chiarella, P. Flaschel and R. Franke, Monetary Macrodynamics, Routledge, London, 2010. doi: 10.4324/9780203859964.  Google Scholar [5] T. Asada, M. Demetrian and R. Zimka, On dynamics in a Keynesian model of monetary and fiscal policy with debt effect, Commun. Nonlinear Sci. Numer. Simul., 58 (2018), 131-146.  doi: 10.1016/j.cnsns.2017.06.013.  Google Scholar [6] T. Asada, M. Demetrian and R. Zimka, On dynamics in a Keynesian model of monetary and fiscal stabilization policy mix with twin debt accumulation, Metroeconomica, 70 (2019), 365-383.   Google Scholar [7] T. Asada, C. Douskos, V. Kalantonis and P. Markellos, Numerical exploration of Kaldorian interregional macrodynamics: Enhanced stability and predominance of period doubling under flexible exchange rates, Discrete Dyn. Nat. Soc., (2010), Art. ID. 263041, 1–29. doi: 10.1155/2010/263041.  Google Scholar [8] T. Asada, C. Douskos and P. Markellos, Numerical exploration of Kaldorian interregional macrodynamics: Stability and the trade threshold for business cycles under fixed exchange rates, Nonlinear Dynamics, Psychology, and Life Sciences, 15 (2011), 105-128.   Google Scholar [9] T. Asada, T. Inaba and T. Misawa, A nonlinear macrodynamic model with fixed exchange rates: Its dynamics and noise effects, Discrete Dyn. Nat. Soc., 4 (2000), 319-331.  doi: 10.1155/S1026022600000303.  Google Scholar [10] T. Asada, T. Inaba and T. Misawa, An interregional dynamic model: The case of fixed exchange rates, Studies in Regional Science, 31 (2001), 29-41.  doi: 10.2457/srs.31.2_29.  Google Scholar [11] T. Asada, V. Kalantonis, M. Markellos and P. Markellos, Analytical expressions of periodic disequilibrium fluctuations generated by Hopf bifurcations in economic dynamics, Appl. Math. Comput., 218 (2012), 7066-7077.  doi: 10.1016/j.amc.2011.12.063.  Google Scholar [12] T. Asada, T. Misawa and T. Inaba, Chaotic dynamics in a flexible exchange rate system: A study of noise effects, Discrete Dyn. Nat. Soc., 4 (2000), 309-317.   Google Scholar [13] R. Barro and X. Sala-i Martin, Economic Growth, 2$^{nd}$ edition, MIT Press, Cambridge, MA, 2004.   Google Scholar [14] J. Benhabib and T. Miyao, Some new results on the dynamics of the generalized Tobin model, International Economic Review, 22 (1981), 589-596.  doi: 10.2307/2526160.  Google Scholar [15] Yu. N. Bibikov, Local Theory of Nonlinear Analytic Ordinary Differential Equations, Lecture Notes in Mathematics, 702. Springer-Verlag, Berlin-New York, 1979.  Google Scholar [16] A. Dohtani, T. Misawa, T. Inaba, M. Yokoo and T. Owase, Chaos, complex transients and noise: Illustration with a Kaldor model, Chaos, Solitons and Fractals, 7 (1996), 2157-2174.  doi: 10.1016/S0960-0779(96)00077-X.  Google Scholar [17] J. M. Fleming, Domestic financial policies under fixed and floating exchange rates, IMF Stuff Papers, 9 (1962), 369-379.   Google Scholar [18] J. A. Frenkel and A. Razin, Fiscal Policies and the World Economy, MIT Press, Cambridge, MA, 1987.  doi: 10.1086/261390.  Google Scholar [19] G. Gandolfo, Economic Dynamics, 4$^{th}$ edition, Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-642-03871-6.  Google Scholar [20] R. M. Goodwin, Essays in Economic Dynamics, Macmillan, London, 1982. doi: 10.1007/978-1-349-05504-3.  Google Scholar [21] K. Hamada, The Political Economy of International Monetary Interdependence, MIT Press, Cambridge, MA, 1985.   Google Scholar [22] T. Inaba and T. Asada, On dynamics of a three-country Kaldorian model of business cycles with fixed exchange rates, In Games and Dynamics in Economics: Essays in Honor of Akio Matsumoto, ed. F. Szidarovszky and G. I. Bischi doi: 10.1007/978-981-15-3623-6_6.  Google Scholar [23] N. Kaldor, A model of the trade cycle, Econ. J., 50 (1940), 78-92.  doi: 10.2307/2225740.  Google Scholar [24] M. Kalecki, Selected Essays on the Dynamics of the Capitalist Economy, Cambridge University Press, Cambridge, UK, 1971.   Google Scholar [25] J. M. Keynes, The General Theory of Employment, Interest and Money, Macmillan, London, 1936. Google Scholar [26] P. Krugman, The Self-Organizing Economy, Blackwell, Oxford, UK, 1996. Google Scholar [27] Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory, Third edition, Applied Mathematical Sciences, 112. Springer-Verlag, New York, 2004. doi: 10.1007/978-1-4757-3978-7.  Google Scholar [28] A. Leijonhufvud, Effective demand failure, Swedish Journal of Economics, 75 (1973), 27-48.  doi: 10.2307/3439273.  Google Scholar [29] W. M. Liu, Criterion of Hopf bifurcations without using eigenvalues, J. Math. Anal. Appl., 182 (1994), 250-256.  doi: 10.1006/jmaa.1994.1079.  Google Scholar [30] H.-W. Lorenz, International trade and the possible occurrence of chaos, Economics Letters, 23 (1987), 135-138.  doi: 10.1016/0165-1765(87)90026-7.  Google Scholar [31] H.-W. Lorenz, Strange attractors in a multisector business cycle model, Journal of Economic Behavior and Organization, 8 (1987), 397-411.  doi: 10.1016/0167-2681(87)90052-7.  Google Scholar [32] P. Maličky and R. Zimka, On the existence of business cycles in Asada's two-regional model, Nonlinear Anal. Real World Appl., 11 (2010), 2787-2795.  doi: 10.1016/j.nonrwa.2009.10.003.  Google Scholar [33] P. Maličky and R. Zimka, On the existence of Tori in Asada's two-regional model, Nonlinear Anal. Real World Appl., 13 (2012), 710-724.  doi: 10.1016/j.nonrwa.2011.08.011.  Google Scholar [34] P. Medve${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over d} }}$ová, A dynamic model of a small open economy under flexible exchange rates, Acta Polytechnica Hungarica, 8 (2011), 13-26.   Google Scholar [35] R. A. Mundell, Capital mobility and stabilization policy under fixed and flexible exchange rates, Canadian Journal of Economics and Political Science, 29 (1963), 475-485.  doi: 10.2307/139336.  Google Scholar [36] R. A. Mundell, International Economics, Macmillan, New York, 1968. Google Scholar [37] M. Nakao, Stability of business cycles and economic openness of monetary union: A Kaldorian two-country model, Evolutionary and Institutional Economics Review, 16 (2019), 65-89.  doi: 10.1007/s40844-019-00124-6.  Google Scholar [38] S. Newhouse, D. Ruelle and F. Takens, Occurrence of strange axiom A attractors near quasi-periodic flows on $T^m, m\geq 3$, Communications in Mathematical Physics, 64 (1978), 35-40.  doi: 10.1007/BF01940759.  Google Scholar [39] J. Niehans, International Monetary Economics, John Hopkins University Press, Baltimore and London, 1984.   Google Scholar [40] P. Nijkamp and A. Reggiani, Interaction, Evolution and Chaos in Space, Springer-Verlag, New York, 1992. doi: 10.1007/978-3-642-77509-3.  Google Scholar [41] T. Puu, Nonlinear Economic Dynamics, $4^{th}$ edition, Springer-Verlag, Berlin, 1997. doi: 10.1007/978-3-642-60775-2.  Google Scholar [42] D. Romer, Advanced Macroeconomics, 4$^{th}$ edition, McGraw-Hill, New York, 2012. Google Scholar [43] J. B. Rosser Jr., From Catastrophe to Chaos: A General Theory of Economic Discontinuities, Kluwer Academic Publishers, Boston, 1991. doi: 10.1007/978-1-4613-3796-6.  Google Scholar [44] N. Sarantis, Macroeconomic policy and activity in an open economy with oligopoly and collective bargaining, Journal of Economics, 49 (1989), 25-46.  doi: 10.1007/BF01227871.  Google Scholar [45] W. Semmler, On nonlinear theories of cycles and the persistence of business cycles, Mathematical Social Sciences, 12 (1986), 47-76.  doi: 10.1016/0165-4896(86)90047-8.  Google Scholar [46] R. Sethi, Endogenous growth cycles in an open economy with fixed exchange rates, Journal of Economic Behavior and Organization, 19 (1992), 327-342.  doi: 10.1016/0167-2681(92)90041-9.  Google Scholar [47] V. Torre, Existence of limit cycles and control in complete Keynesian system by theory of bifurcations, Econometrica, 45 (1977), 1457-1466.  doi: 10.2307/1912311.  Google Scholar [48] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Texts in Applied Mathematics, 2. Springer-Verlag, New York, 1990. doi: 10.1007/978-1-4757-4067-7.  Google Scholar

show all references

##### References:
 [1] T. Asada, Kaldorian dynamics in an open economy, J. Econ., 62 (1995), 239-269.  doi: 10.1007/BF01238819.  Google Scholar [2] T. Asada, A two-regional model of business cycles with fixed exchange rates : A Kaldorian approach, Studies in Regional Sciences, 34 (2004), 19-38.  doi: 10.2457/srs.34.2_19.  Google Scholar [3] T. Asada, C. Chiarella, P. Flaschel and R. Franke, Open Economy Macrodynamics: An Integrated Disequilibrium Approach, Springer-Verlag, Berlin, 2003. Google Scholar [4] T. Asada, C. Chiarella, P. Flaschel and R. Franke, Monetary Macrodynamics, Routledge, London, 2010. doi: 10.4324/9780203859964.  Google Scholar [5] T. Asada, M. Demetrian and R. Zimka, On dynamics in a Keynesian model of monetary and fiscal policy with debt effect, Commun. Nonlinear Sci. Numer. Simul., 58 (2018), 131-146.  doi: 10.1016/j.cnsns.2017.06.013.  Google Scholar [6] T. Asada, M. Demetrian and R. Zimka, On dynamics in a Keynesian model of monetary and fiscal stabilization policy mix with twin debt accumulation, Metroeconomica, 70 (2019), 365-383.   Google Scholar [7] T. Asada, C. Douskos, V. Kalantonis and P. Markellos, Numerical exploration of Kaldorian interregional macrodynamics: Enhanced stability and predominance of period doubling under flexible exchange rates, Discrete Dyn. Nat. Soc., (2010), Art. ID. 263041, 1–29. doi: 10.1155/2010/263041.  Google Scholar [8] T. Asada, C. Douskos and P. Markellos, Numerical exploration of Kaldorian interregional macrodynamics: Stability and the trade threshold for business cycles under fixed exchange rates, Nonlinear Dynamics, Psychology, and Life Sciences, 15 (2011), 105-128.   Google Scholar [9] T. Asada, T. Inaba and T. Misawa, A nonlinear macrodynamic model with fixed exchange rates: Its dynamics and noise effects, Discrete Dyn. Nat. Soc., 4 (2000), 319-331.  doi: 10.1155/S1026022600000303.  Google Scholar [10] T. Asada, T. Inaba and T. Misawa, An interregional dynamic model: The case of fixed exchange rates, Studies in Regional Science, 31 (2001), 29-41.  doi: 10.2457/srs.31.2_29.  Google Scholar [11] T. Asada, V. Kalantonis, M. Markellos and P. Markellos, Analytical expressions of periodic disequilibrium fluctuations generated by Hopf bifurcations in economic dynamics, Appl. Math. Comput., 218 (2012), 7066-7077.  doi: 10.1016/j.amc.2011.12.063.  Google Scholar [12] T. Asada, T. Misawa and T. Inaba, Chaotic dynamics in a flexible exchange rate system: A study of noise effects, Discrete Dyn. Nat. Soc., 4 (2000), 309-317.   Google Scholar [13] R. Barro and X. Sala-i Martin, Economic Growth, 2$^{nd}$ edition, MIT Press, Cambridge, MA, 2004.   Google Scholar [14] J. Benhabib and T. Miyao, Some new results on the dynamics of the generalized Tobin model, International Economic Review, 22 (1981), 589-596.  doi: 10.2307/2526160.  Google Scholar [15] Yu. N. Bibikov, Local Theory of Nonlinear Analytic Ordinary Differential Equations, Lecture Notes in Mathematics, 702. Springer-Verlag, Berlin-New York, 1979.  Google Scholar [16] A. Dohtani, T. Misawa, T. Inaba, M. Yokoo and T. Owase, Chaos, complex transients and noise: Illustration with a Kaldor model, Chaos, Solitons and Fractals, 7 (1996), 2157-2174.  doi: 10.1016/S0960-0779(96)00077-X.  Google Scholar [17] J. M. Fleming, Domestic financial policies under fixed and floating exchange rates, IMF Stuff Papers, 9 (1962), 369-379.   Google Scholar [18] J. A. Frenkel and A. Razin, Fiscal Policies and the World Economy, MIT Press, Cambridge, MA, 1987.  doi: 10.1086/261390.  Google Scholar [19] G. Gandolfo, Economic Dynamics, 4$^{th}$ edition, Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-642-03871-6.  Google Scholar [20] R. M. Goodwin, Essays in Economic Dynamics, Macmillan, London, 1982. doi: 10.1007/978-1-349-05504-3.  Google Scholar [21] K. Hamada, The Political Economy of International Monetary Interdependence, MIT Press, Cambridge, MA, 1985.   Google Scholar [22] T. Inaba and T. Asada, On dynamics of a three-country Kaldorian model of business cycles with fixed exchange rates, In Games and Dynamics in Economics: Essays in Honor of Akio Matsumoto, ed. F. Szidarovszky and G. I. Bischi doi: 10.1007/978-981-15-3623-6_6.  Google Scholar [23] N. Kaldor, A model of the trade cycle, Econ. J., 50 (1940), 78-92.  doi: 10.2307/2225740.  Google Scholar [24] M. Kalecki, Selected Essays on the Dynamics of the Capitalist Economy, Cambridge University Press, Cambridge, UK, 1971.   Google Scholar [25] J. M. Keynes, The General Theory of Employment, Interest and Money, Macmillan, London, 1936. Google Scholar [26] P. Krugman, The Self-Organizing Economy, Blackwell, Oxford, UK, 1996. Google Scholar [27] Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory, Third edition, Applied Mathematical Sciences, 112. Springer-Verlag, New York, 2004. doi: 10.1007/978-1-4757-3978-7.  Google Scholar [28] A. Leijonhufvud, Effective demand failure, Swedish Journal of Economics, 75 (1973), 27-48.  doi: 10.2307/3439273.  Google Scholar [29] W. M. Liu, Criterion of Hopf bifurcations without using eigenvalues, J. Math. Anal. Appl., 182 (1994), 250-256.  doi: 10.1006/jmaa.1994.1079.  Google Scholar [30] H.-W. Lorenz, International trade and the possible occurrence of chaos, Economics Letters, 23 (1987), 135-138.  doi: 10.1016/0165-1765(87)90026-7.  Google Scholar [31] H.-W. Lorenz, Strange attractors in a multisector business cycle model, Journal of Economic Behavior and Organization, 8 (1987), 397-411.  doi: 10.1016/0167-2681(87)90052-7.  Google Scholar [32] P. Maličky and R. Zimka, On the existence of business cycles in Asada's two-regional model, Nonlinear Anal. Real World Appl., 11 (2010), 2787-2795.  doi: 10.1016/j.nonrwa.2009.10.003.  Google Scholar [33] P. Maličky and R. Zimka, On the existence of Tori in Asada's two-regional model, Nonlinear Anal. Real World Appl., 13 (2012), 710-724.  doi: 10.1016/j.nonrwa.2011.08.011.  Google Scholar [34] P. Medve${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over d} }}$ová, A dynamic model of a small open economy under flexible exchange rates, Acta Polytechnica Hungarica, 8 (2011), 13-26.   Google Scholar [35] R. A. Mundell, Capital mobility and stabilization policy under fixed and flexible exchange rates, Canadian Journal of Economics and Political Science, 29 (1963), 475-485.  doi: 10.2307/139336.  Google Scholar [36] R. A. Mundell, International Economics, Macmillan, New York, 1968. Google Scholar [37] M. Nakao, Stability of business cycles and economic openness of monetary union: A Kaldorian two-country model, Evolutionary and Institutional Economics Review, 16 (2019), 65-89.  doi: 10.1007/s40844-019-00124-6.  Google Scholar [38] S. Newhouse, D. Ruelle and F. Takens, Occurrence of strange axiom A attractors near quasi-periodic flows on $T^m, m\geq 3$, Communications in Mathematical Physics, 64 (1978), 35-40.  doi: 10.1007/BF01940759.  Google Scholar [39] J. Niehans, International Monetary Economics, John Hopkins University Press, Baltimore and London, 1984.   Google Scholar [40] P. Nijkamp and A. Reggiani, Interaction, Evolution and Chaos in Space, Springer-Verlag, New York, 1992. doi: 10.1007/978-3-642-77509-3.  Google Scholar [41] T. Puu, Nonlinear Economic Dynamics, $4^{th}$ edition, Springer-Verlag, Berlin, 1997. doi: 10.1007/978-3-642-60775-2.  Google Scholar [42] D. Romer, Advanced Macroeconomics, 4$^{th}$ edition, McGraw-Hill, New York, 2012. Google Scholar [43] J. B. Rosser Jr., From Catastrophe to Chaos: A General Theory of Economic Discontinuities, Kluwer Academic Publishers, Boston, 1991. doi: 10.1007/978-1-4613-3796-6.  Google Scholar [44] N. Sarantis, Macroeconomic policy and activity in an open economy with oligopoly and collective bargaining, Journal of Economics, 49 (1989), 25-46.  doi: 10.1007/BF01227871.  Google Scholar [45] W. Semmler, On nonlinear theories of cycles and the persistence of business cycles, Mathematical Social Sciences, 12 (1986), 47-76.  doi: 10.1016/0165-4896(86)90047-8.  Google Scholar [46] R. Sethi, Endogenous growth cycles in an open economy with fixed exchange rates, Journal of Economic Behavior and Organization, 19 (1992), 327-342.  doi: 10.1016/0167-2681(92)90041-9.  Google Scholar [47] V. Torre, Existence of limit cycles and control in complete Keynesian system by theory of bifurcations, Econometrica, 45 (1977), 1457-1466.  doi: 10.2307/1912311.  Google Scholar [48] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Texts in Applied Mathematics, 2. Springer-Verlag, New York, 1990. doi: 10.1007/978-1-4757-4067-7.  Google Scholar
Solution starts 'inside' the unstable cycle and goes to the equilibrium. $\alpha_1 = 0.98\times\alpha_1^*$. Initial values: $Y_{10} = 1.3\times Y_1^*,Y_{20} = 1.3\times Y_2^*,Y_{30} = Y_3^*,K_{i0} = K_i^*,\ i = 1,2,3,\ M_{10} = M_1^*, M_{20} = M_2^*$. We see that all variables of the solution go to the equilibrium. This is in compliance with the result from the bifurcation equation (29) - that the equilibrium is locally stable on the left side of the bifurcation value $\alpha_1^*$
, go out of the equilibrium. Comparing the initial values of both solutions and their subsequent paths, we observe that these two solutions are 'separated' by a cycle that is unstable. This is in compliance with the result obtained from bifurcation equation (29), that the cycle is unstable (subcritical)">Figure 2.  Solution starts 'outside' the unstable cycle and goes out of the cycle. $\alpha_1 = 0.98\times\alpha_1^*$. Initial values: $Y_{10} = 1.395\times Y_1^*,Y_{20} = 1.395\times Y_2^*,Y_{30} = Y_3^*,K_{i0} = K_i^*,\ i = 1,2,3,\ M_{10} = M_1^*, M_{20} = M_2^*$. We see that all variables of the solution which starts a little further from the equilibrium as the solution in Figure 1, go out of the equilibrium. Comparing the initial values of both solutions and their subsequent paths, we observe that these two solutions are 'separated' by a cycle that is unstable. This is in compliance with the result obtained from bifurcation equation (29), that the cycle is unstable (subcritical)
Solution goes out of the equilibrium. $\alpha_1 = 1.1\times\alpha_1^*$. Initial values: $Y_{10} = 1.1\times Y_1^*,Y_{20} = 1.1\times Y_2^*,Y_{30} = Y_3^*,K_{i0} = K_i^*,\ i = 1,2,3,\ M_{10} = M_1^*, M_{20} = M_2^*$. It is clear that if $\alpha_1>\alpha_1^*$ the equilibrium is unstable. This is consistent with our theoretical results. A similar result holds for the value $\alpha_1 = \alpha_1^*$. Though in this case the solution goes out of equilibrium more slowly than when $\alpha_1>\alpha_1^*$. This follows immediately from the first differential equation in model (28)
The dependence of equilibrium values on parameter $\delta$ at $\beta = \frac{5000}{3}$. These graphs show how equilibrium varies with parameter $\delta$, and how parameter $\delta$ influences real national incomes, real physical capital stocks and nominal money stocks in the selected economies
The dependence of $K_1^*,K_2^*,K_3^*$ on parameter $\beta$ at $\delta = 1$. The graphs show that the dependence of the equilibrium values $K_1^*,K_2^*,K_3^*$ on $\beta$ is almost negligible. The same holds for the equilibrium values of $M_1^*,M_2^*$. As the dependence of equilibrium values $K_1^*,K_2^*,K_3^*,M_1^*,M_2^*$ on the changes of parameter $\beta$ is negligible, we do not present considerations on the impact of simultaneous changes in both parameters $\delta$ and $\beta$ in this paper
 [1] Qigang Yuan, Yutong Sun, Jingli Ren. How interest rate influences a business cycle model. Discrete & Continuous Dynamical Systems - S, 2020, 13 (11) : 3231-3251. doi: 10.3934/dcdss.2020190 [2] Frederic Mazenc, Gonzalo Robledo, Michael Malisoff. Stability and robustness analysis for a multispecies chemostat model with delays in the growth rates and uncertainties. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1851-1872. doi: 10.3934/dcdsb.2018098 [3] Qinglong Zhou, Yongchao Zhang. Analytic results for the linear stability of the equilibrium point in Robe's restricted elliptic three-body problem. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1763-1787. doi: 10.3934/dcds.2017074 [4] Liming Zhang, Rongming Wang, Jiaqin Wei. Open-loop equilibrium mean-variance reinsurance, new business and investment strategies with constraints. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021140 [5] Gongpin Cheng, Lin Xu. Optimal size of business and dividend strategy in a nonlinear model with refinancing and liquidation value. Mathematical Control & Related Fields, 2017, 7 (1) : 1-19. doi: 10.3934/mcrf.2017001 [6] Yeping Li, Jie Liao. Stability and $L^{p}$ convergence rates of planar diffusion waves for three-dimensional bipolar Euler-Poisson systems. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1281-1302. doi: 10.3934/cpaa.2019062 [7] Jon Chaika, Alex Eskin. Möbius disjointness for interval exchange transformations on three intervals. Journal of Modern Dynamics, 2019, 14: 55-86. doi: 10.3934/jmd.2019003 [8] Davit Karagulyan. Hausdorff dimension of a class of three-interval exchange maps. Discrete & Continuous Dynamical Systems, 2020, 40 (3) : 1257-1281. doi: 10.3934/dcds.2020077 [9] Chunqing Wu, Patricia J.Y. Wong. Global asymptotical stability of the coexistence fixed point of a Ricker-type competitive model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3255-3266. doi: 10.3934/dcdsb.2015.20.3255 [10] Shimin Li, Jaume Llibre. On the limit cycles of planar discontinuous piecewise linear differential systems with a unique equilibrium. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5885-5901. doi: 10.3934/dcdsb.2019111 [11] Yoshiaki Muroya, Toshikazu Kuniya, Yoichi Enatsu. Global stability of a delayed multi-group SIRS epidemic model with nonlinear incidence rates and relapse of infection. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3057-3091. doi: 10.3934/dcdsb.2015.20.3057 [12] Elvio Accinelli, Edgar Sánchez Carrera, Laura Policardo, Osvaldo Salas. Free mobility of capital and Labor force in a two-country model: The dynamic game for growth. Journal of Dynamics & Games, 2019, 6 (3) : 179-194. doi: 10.3934/jdg.2019013 [13] Erick Limas. An application of minimal spanning trees and hierarchical trees to the study of Latin American exchange rates. Journal of Dynamics & Games, 2019, 6 (2) : 131-148. doi: 10.3934/jdg.2019010 [14] Leonid Shaikhet. Stability of a positive equilibrium state for a stochastically perturbed mathematical model of glassy-winged sharpshooter population. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1167-1174. doi: 10.3934/mbe.2014.11.1167 [15] Maria Carvalho, Alexander Lohse, Alexandre A. P. Rodrigues. Moduli of stability for heteroclinic cycles of periodic solutions. Discrete & Continuous Dynamical Systems, 2019, 39 (11) : 6541-6564. doi: 10.3934/dcds.2019284 [16] José Luis Bravo, Manuel Fernández, Armengol Gasull. Stability of singular limit cycles for Abel equations. Discrete & Continuous Dynamical Systems, 2015, 35 (5) : 1873-1890. doi: 10.3934/dcds.2015.35.1873 [17] Mats Gyllenberg, Ping Yan. On the number of limit cycles for three dimensional Lotka-Volterra systems. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 347-352. doi: 10.3934/dcdsb.2009.11.347 [18] Xiong Li. The stability of the equilibrium for a perturbed asymmetric oscillator. Communications on Pure & Applied Analysis, 2006, 5 (3) : 515-528. doi: 10.3934/cpaa.2006.5.515 [19] Xiong Li. The stability of the equilibrium for a perturbed asymmetric oscillator. Communications on Pure & Applied Analysis, 2007, 6 (1) : 69-82. doi: 10.3934/cpaa.2007.6.69 [20] Feng Zhang, Jinting Wang, Bin Liu. On the optimal and equilibrium retrial rates in an unreliable retrial queue with vacations. Journal of Industrial & Management Optimization, 2012, 8 (4) : 861-875. doi: 10.3934/jimo.2012.8.861

2020 Impact Factor: 1.327

## Tools

Article outline

Figures and Tables