• Previous Article
    A free boundary problem of some modified Leslie-Gower predator-prey model with nonlocal diffusion term
  • DCDS-B Home
  • This Issue
  • Next Article
    Stochastic fractional integro-differential equations with weakly singular kernels: Well-posedness and Euler–Maruyama approximation
doi: 10.3934/dcdsb.2021156
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Local well-posedness and finite time blowup for fourth-order Schrödinger equation with complex coefficient

School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China

* Corresponding author: Ting Zhang

Received  December 2020 Early access June 2021

We consider the fourth-order Schrödinger equation
$ i\partial_tu+\Delta^2 u+\mu\Delta u+\lambda|u|^\alpha u = 0, $
where
$ \alpha>0, \mu = \pm1 $
or
$ 0 $
and
$ \lambda\in\mathbb{C} $
. Firstly, we prove local well-posedness in
$ H^4\left( {\mathbb R}^N\right) $
in both
$ H^4 $
subcritical and critical case:
$ \alpha>0 $
,
$ (N-8)\alpha\leq8 $
. Then, for any given compact set
$ K\subset\mathbb{R}^N $
, we construct
$ H^4( {\mathbb R}^N) $
solutions that are defined on
$ (-T, 0) $
for some
$ T>0 $
, and blow up exactly on
$ K $
at
$ t = 0 $
.
Citation: Xuan Liu, Ting Zhang. Local well-posedness and finite time blowup for fourth-order Schrödinger equation with complex coefficient. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021156
References:
[1]

S. Alinhac, Blowup for Nonlinear Hyperbolic Equations, Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc., 17. Boston, MA, 1995. doi: 10.1007/978-1-4612-2578-2.  Google Scholar

[2]

G. BaruchG. Fibich and E. Mandelbaum, Singular solutions of the biharmonic nonlinear Schrödinger equation, SIAM J. Appl. Math., 70 (2010), 3319-3341.  doi: 10.1137/100784199.  Google Scholar

[3]

G. BaruchG. Fibich and N. Gavish, Singular standing ring solutions of nonlinear partial differential equations, Physica D, 239 (2010), 1968-1983.  doi: 10.1016/j.physd.2010.07.009.  Google Scholar

[4]

G. Baruch and G. Fibic, Singular solutions of the $L^2$-supercritical biharmonic nonlinear Schrödinger equation, Physica D, 24 (2011), 1843-1859.  doi: 10.1088/0951-7715/24/6/009.  Google Scholar

[5]

M. Ben-ArtziH. Koch and J. C. Saut, Disperion estimates for fourth order Schrödinger equations, C. R. Acad. Sci. Paris Sér. I Math., 330 (2000), 87-92.  doi: 10.1016/S0764-4442(00)00120-8.  Google Scholar

[6]

T. Boulenger and E. Lenzmann, Blowup for Biharmonic NLS, Ann. Sci. Ecole Norm. Sup., 50 (2017), 503-544.  doi: 10.24033/asens.2326.  Google Scholar

[7]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, American Mathematical Society, New York; Providence, RI, 2003. doi: 10.1090/cln/010.  Google Scholar

[8]

T. CazenaveS. CorreiaF. Dickstein and F. B. Weissler, A Fujita-type blowup result and low energy scattering for a nonlinear Schrödinger equation, São Paulo J. Math. Sci., 9 (2015), 146-161.  doi: 10.1007/s40863-015-0020-6.  Google Scholar

[9]

T. CazenaveD. Y. Fang and Z. Han, Local well-posedness for the $H^2$-critical nonlinear Schrödinger equation, Trans. Amer. Math. Soc., 368 (2016), 7911-7934.  doi: 10.1090/tran6683.  Google Scholar

[10]

T. CazenaveZ. Han and Y. Martel, Blowup on an arbitrary compact set for a Schrödinger equation with nonlinear source term, J. Dyn. Diff. Equat., 33 (2021), 941-960.  doi: 10.1007/s10884-020-09841-8.  Google Scholar

[11]

T. CazenaveY. Martel and L. F. Zhao, Solutions with prescribed local blow-up surface for the nonlinear wave equation, Adv. Nonlinear Stud., 19 (2019), 639-675.  doi: 10.1515/ans-2019-2059.  Google Scholar

[12]

T. CazenaveY. Martel and L. F. Zhao, Finite-time blowup for a Schrödinger equation with nonlinear source term, Discrete Contin. Dyn. Syst., 39 (2019), 1171-1183.  doi: 10.3934/dcds.2019050.  Google Scholar

[13]

T. CazenaveY. Martel and L. F. Zhao, Solutions blowing up on any given compact set for the energy subcritical wave equation, J. Differential Equations, 268 (2020), 680-706.  doi: 10.1016/j.jde.2019.08.030.  Google Scholar

[14]

Y. ChoT. Ozawa and C. Wang, Finite time blowup for the fourth-order NLS, Bull. Korean Math. Soc., 53 (2016), 615-640.  doi: 10.4134/BKMS.2016.53.2.615.  Google Scholar

[15]

C. Collot, T. E. Ghouland and N. Masmoudi, Singularity formation for Burgers equation with transverse viscosity, 2018, arXiv: 1803.07826. Google Scholar

[16]

G. M. Constantine and T. H. Savits, A multivariate Faa di Bruno formula with applications, Trans. Amer. Math. Soc., 348 (1996), 503-520.  doi: 10.1090/S0002-9947-96-01501-2.  Google Scholar

[17]

M. C. Cross and P. C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod. Phys., 65 (1993), 851-1112.   Google Scholar

[18]

G. FibichB. Ilan and G. Papanicolaou, Self-focusing with forth-order dispersion, SIAM J. Appl. Math., 62 (2002), 1437-1462.  doi: 10.1137/S0036139901387241.  Google Scholar

[19]

S. B. Cui and C. H. Guo, Well-posedness of higher-order nonlinear Schrödinger equations in Sobolev spaces $H^s({\mathbb R}^N)$ and applications, Nonlinear Anal., 67 (2007), 687-707.  doi: 10.1016/j.na.2006.06.020.  Google Scholar

[20]

V. D. Dinh, On blowup solutions to the focusing intercritical nonlinear fourth-order Schrödinger equation, J. Dynam. Differential Equations, 31 (2019), 1793-1823.  doi: 10.1007/s10884-018-9690-y.  Google Scholar

[21]

V. I. Karpman, Lyapunov approach to the soliton stability in highly dispersive systems I. Fourth order nonlinear Schrödinger equations, Phys. Lett. A, 215 (1996), 254-256.  doi: 10.1016/0375-9601(96)00231-9.  Google Scholar

[22]

V. I. Karpman and A. G. Shagalov, Influence of high-order dispersion on self-focusing. II. Numerical investigation, Phys. Lett. A, 160 (1991), 538-540.   Google Scholar

[23]

T. Kato, On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 46 (1987), 113-129.   Google Scholar

[24]

T. Kato, Nonlinear Schrödinger equations, Schrödinger operators (Sønderborg, 1988), Lecture Notes in Phys, 345 (1989), 218-263.  doi: 10.1007/3-540-51783-9_22.  Google Scholar

[25]

S. Kawakami and S. Machihara, Blowup solutions for the nonlinear Schrödinger equation with complex coefficient, Differential Integral Equations, 33 (2020), 445-464.   Google Scholar

[26]

M. Keel and T. Tao, Endpoint Strichartz inequalities, Amer. J. Math., 120 (1998), 955-980.   Google Scholar

[27]

X. Liu and T. Zhang, $H^2$ blowup result for a Schrödinger equation with nonlinear source term, Electron. Res. Arch., 28 (2020), 777-794.  doi: 10.3934/era.2020039.  Google Scholar

[28]

F. Merle, Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity, Comm. Math. Phys., 129 (1990), 223-240.   Google Scholar

[29]

Y. Martel, Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations, Amer. J. Math., 127 (2005), 1103-1140.   Google Scholar

[30]

F. Merle and H. Zaag, On the stability of the notion of non-characteristic point and blow-up profile for semilinear wave equations, Comm. Math. Phys., 333 (2015), 1529-1562.  doi: 10.1007/s00220-014-2132-8.  Google Scholar

[31]

F. Merle and H. Zaag, O.D.E. type behavior of blow-up solutions of nonlinear heat equations, Discrete Contin. Dyn. Syst., 8 (2002), 435-450.  doi: 10.3934/dcds.2002.8.435.  Google Scholar

[32]

C. MiaoG. Xu and L. Zhao, Global well-posedness and scattering for the focusing energy-critical nonlinear Schrödinger equations of fourth order in the radial case, J. Differential Equations, 246 (2009), 3715-3749.  doi: 10.1016/j.jde.2008.11.011.  Google Scholar

[33]

C. MiaoG. Xu and L. Zhao, Global well-posedness and scattering for the focusing energy critical nonlinear Schrödinger equations of fourth order in dimensions $d \geq9$, J. Differential Equations, 251 (2011), 3381-3402.  doi: 10.1016/j.jde.2011.08.009.  Google Scholar

[34]

A. Mielke, The Ginzburg-Landau equation in its role as a modulation equation, North-Holland, Amsterdam, Handbook of Dynamical Systems, 2 (2002), 759-834.  doi: 10.1016/S1874-575X(02)80036-4.  Google Scholar

[35]

I. Moerdijk and G. Reyes, Models for Smooth Infinitesimal Analysis, , Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4757-4143-8.  Google Scholar

[36]

N. Nouaili and H. Zaag, Construction of a blow-up solution for the complex Ginzburg-Landau equation in a critical case, Arch. Ration. Mech. Anal., 228 (2018), 995-1058.  doi: 10.1007/s00205-017-1211-3.  Google Scholar

[37]

B. Pausader, Global well-posedness for energy-critical fourth-order Schrödinger equation in the radial case, Dyn. Partial Differ. Equ., 4 (2007), 197-225.  doi: 10.4310/DPDE.2007.v4.n3.a1.  Google Scholar

[38]

J. Simon, Compact sets in the space $L^p(0, T; B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[39]

J. Speck, Stable ODE-type blowup for some quasilinear wave equations with derivative-quadratic nonlinearity, ANALYSIS & PDE, 13 (2020), 93-146.  doi: 10.2140/apde.2020.13.93.  Google Scholar

[40]

K. Stewartson and J. T. Stuart, A non-linear instability theory for a wave system in plane Poiseuille flow, J. Fluid Mech., 48 (1971), 529-545.  doi: 10.1017/S0022112071001733.  Google Scholar

show all references

References:
[1]

S. Alinhac, Blowup for Nonlinear Hyperbolic Equations, Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc., 17. Boston, MA, 1995. doi: 10.1007/978-1-4612-2578-2.  Google Scholar

[2]

G. BaruchG. Fibich and E. Mandelbaum, Singular solutions of the biharmonic nonlinear Schrödinger equation, SIAM J. Appl. Math., 70 (2010), 3319-3341.  doi: 10.1137/100784199.  Google Scholar

[3]

G. BaruchG. Fibich and N. Gavish, Singular standing ring solutions of nonlinear partial differential equations, Physica D, 239 (2010), 1968-1983.  doi: 10.1016/j.physd.2010.07.009.  Google Scholar

[4]

G. Baruch and G. Fibic, Singular solutions of the $L^2$-supercritical biharmonic nonlinear Schrödinger equation, Physica D, 24 (2011), 1843-1859.  doi: 10.1088/0951-7715/24/6/009.  Google Scholar

[5]

M. Ben-ArtziH. Koch and J. C. Saut, Disperion estimates for fourth order Schrödinger equations, C. R. Acad. Sci. Paris Sér. I Math., 330 (2000), 87-92.  doi: 10.1016/S0764-4442(00)00120-8.  Google Scholar

[6]

T. Boulenger and E. Lenzmann, Blowup for Biharmonic NLS, Ann. Sci. Ecole Norm. Sup., 50 (2017), 503-544.  doi: 10.24033/asens.2326.  Google Scholar

[7]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, American Mathematical Society, New York; Providence, RI, 2003. doi: 10.1090/cln/010.  Google Scholar

[8]

T. CazenaveS. CorreiaF. Dickstein and F. B. Weissler, A Fujita-type blowup result and low energy scattering for a nonlinear Schrödinger equation, São Paulo J. Math. Sci., 9 (2015), 146-161.  doi: 10.1007/s40863-015-0020-6.  Google Scholar

[9]

T. CazenaveD. Y. Fang and Z. Han, Local well-posedness for the $H^2$-critical nonlinear Schrödinger equation, Trans. Amer. Math. Soc., 368 (2016), 7911-7934.  doi: 10.1090/tran6683.  Google Scholar

[10]

T. CazenaveZ. Han and Y. Martel, Blowup on an arbitrary compact set for a Schrödinger equation with nonlinear source term, J. Dyn. Diff. Equat., 33 (2021), 941-960.  doi: 10.1007/s10884-020-09841-8.  Google Scholar

[11]

T. CazenaveY. Martel and L. F. Zhao, Solutions with prescribed local blow-up surface for the nonlinear wave equation, Adv. Nonlinear Stud., 19 (2019), 639-675.  doi: 10.1515/ans-2019-2059.  Google Scholar

[12]

T. CazenaveY. Martel and L. F. Zhao, Finite-time blowup for a Schrödinger equation with nonlinear source term, Discrete Contin. Dyn. Syst., 39 (2019), 1171-1183.  doi: 10.3934/dcds.2019050.  Google Scholar

[13]

T. CazenaveY. Martel and L. F. Zhao, Solutions blowing up on any given compact set for the energy subcritical wave equation, J. Differential Equations, 268 (2020), 680-706.  doi: 10.1016/j.jde.2019.08.030.  Google Scholar

[14]

Y. ChoT. Ozawa and C. Wang, Finite time blowup for the fourth-order NLS, Bull. Korean Math. Soc., 53 (2016), 615-640.  doi: 10.4134/BKMS.2016.53.2.615.  Google Scholar

[15]

C. Collot, T. E. Ghouland and N. Masmoudi, Singularity formation for Burgers equation with transverse viscosity, 2018, arXiv: 1803.07826. Google Scholar

[16]

G. M. Constantine and T. H. Savits, A multivariate Faa di Bruno formula with applications, Trans. Amer. Math. Soc., 348 (1996), 503-520.  doi: 10.1090/S0002-9947-96-01501-2.  Google Scholar

[17]

M. C. Cross and P. C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod. Phys., 65 (1993), 851-1112.   Google Scholar

[18]

G. FibichB. Ilan and G. Papanicolaou, Self-focusing with forth-order dispersion, SIAM J. Appl. Math., 62 (2002), 1437-1462.  doi: 10.1137/S0036139901387241.  Google Scholar

[19]

S. B. Cui and C. H. Guo, Well-posedness of higher-order nonlinear Schrödinger equations in Sobolev spaces $H^s({\mathbb R}^N)$ and applications, Nonlinear Anal., 67 (2007), 687-707.  doi: 10.1016/j.na.2006.06.020.  Google Scholar

[20]

V. D. Dinh, On blowup solutions to the focusing intercritical nonlinear fourth-order Schrödinger equation, J. Dynam. Differential Equations, 31 (2019), 1793-1823.  doi: 10.1007/s10884-018-9690-y.  Google Scholar

[21]

V. I. Karpman, Lyapunov approach to the soliton stability in highly dispersive systems I. Fourth order nonlinear Schrödinger equations, Phys. Lett. A, 215 (1996), 254-256.  doi: 10.1016/0375-9601(96)00231-9.  Google Scholar

[22]

V. I. Karpman and A. G. Shagalov, Influence of high-order dispersion on self-focusing. II. Numerical investigation, Phys. Lett. A, 160 (1991), 538-540.   Google Scholar

[23]

T. Kato, On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 46 (1987), 113-129.   Google Scholar

[24]

T. Kato, Nonlinear Schrödinger equations, Schrödinger operators (Sønderborg, 1988), Lecture Notes in Phys, 345 (1989), 218-263.  doi: 10.1007/3-540-51783-9_22.  Google Scholar

[25]

S. Kawakami and S. Machihara, Blowup solutions for the nonlinear Schrödinger equation with complex coefficient, Differential Integral Equations, 33 (2020), 445-464.   Google Scholar

[26]

M. Keel and T. Tao, Endpoint Strichartz inequalities, Amer. J. Math., 120 (1998), 955-980.   Google Scholar

[27]

X. Liu and T. Zhang, $H^2$ blowup result for a Schrödinger equation with nonlinear source term, Electron. Res. Arch., 28 (2020), 777-794.  doi: 10.3934/era.2020039.  Google Scholar

[28]

F. Merle, Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity, Comm. Math. Phys., 129 (1990), 223-240.   Google Scholar

[29]

Y. Martel, Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations, Amer. J. Math., 127 (2005), 1103-1140.   Google Scholar

[30]

F. Merle and H. Zaag, On the stability of the notion of non-characteristic point and blow-up profile for semilinear wave equations, Comm. Math. Phys., 333 (2015), 1529-1562.  doi: 10.1007/s00220-014-2132-8.  Google Scholar

[31]

F. Merle and H. Zaag, O.D.E. type behavior of blow-up solutions of nonlinear heat equations, Discrete Contin. Dyn. Syst., 8 (2002), 435-450.  doi: 10.3934/dcds.2002.8.435.  Google Scholar

[32]

C. MiaoG. Xu and L. Zhao, Global well-posedness and scattering for the focusing energy-critical nonlinear Schrödinger equations of fourth order in the radial case, J. Differential Equations, 246 (2009), 3715-3749.  doi: 10.1016/j.jde.2008.11.011.  Google Scholar

[33]

C. MiaoG. Xu and L. Zhao, Global well-posedness and scattering for the focusing energy critical nonlinear Schrödinger equations of fourth order in dimensions $d \geq9$, J. Differential Equations, 251 (2011), 3381-3402.  doi: 10.1016/j.jde.2011.08.009.  Google Scholar

[34]

A. Mielke, The Ginzburg-Landau equation in its role as a modulation equation, North-Holland, Amsterdam, Handbook of Dynamical Systems, 2 (2002), 759-834.  doi: 10.1016/S1874-575X(02)80036-4.  Google Scholar

[35]

I. Moerdijk and G. Reyes, Models for Smooth Infinitesimal Analysis, , Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4757-4143-8.  Google Scholar

[36]

N. Nouaili and H. Zaag, Construction of a blow-up solution for the complex Ginzburg-Landau equation in a critical case, Arch. Ration. Mech. Anal., 228 (2018), 995-1058.  doi: 10.1007/s00205-017-1211-3.  Google Scholar

[37]

B. Pausader, Global well-posedness for energy-critical fourth-order Schrödinger equation in the radial case, Dyn. Partial Differ. Equ., 4 (2007), 197-225.  doi: 10.4310/DPDE.2007.v4.n3.a1.  Google Scholar

[38]

J. Simon, Compact sets in the space $L^p(0, T; B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[39]

J. Speck, Stable ODE-type blowup for some quasilinear wave equations with derivative-quadratic nonlinearity, ANALYSIS & PDE, 13 (2020), 93-146.  doi: 10.2140/apde.2020.13.93.  Google Scholar

[40]

K. Stewartson and J. T. Stuart, A non-linear instability theory for a wave system in plane Poiseuille flow, J. Fluid Mech., 48 (1971), 529-545.  doi: 10.1017/S0022112071001733.  Google Scholar

[1]

Boling Guo, Jun Wu. Well-posedness of the initial-boundary value problem for the fourth-order nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021205

[2]

Kelin Li, Huafei Di. On the well-posedness and stability for the fourth-order Schrödinger equation with nonlinear derivative term. Discrete & Continuous Dynamical Systems - S, 2021, 14 (12) : 4293-4320. doi: 10.3934/dcdss.2021122

[3]

Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 487-504. doi: 10.3934/cpaa.2018027

[4]

Jun-ichi Segata. Well-posedness and existence of standing waves for the fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems, 2010, 27 (3) : 1093-1105. doi: 10.3934/dcds.2010.27.1093

[5]

Lassaad Aloui, Slim Tayachi. Local well-posedness for the inhomogeneous nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2021, 41 (11) : 5409-5437. doi: 10.3934/dcds.2021082

[6]

Hiroyuki Hirayama, Mamoru Okamoto. Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity. Communications on Pure & Applied Analysis, 2016, 15 (3) : 831-851. doi: 10.3934/cpaa.2016.15.831

[7]

Carlos Banquet, Élder J. Villamizar-Roa. On the management fourth-order Schrödinger-Hartree equation. Evolution Equations & Control Theory, 2020, 9 (3) : 865-889. doi: 10.3934/eect.2020037

[8]

Seckin Demirbas. Local well-posedness for 2-D Schrödinger equation on irrational tori and bounds on Sobolev norms. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1517-1530. doi: 10.3934/cpaa.2017072

[9]

Nobu Kishimoto. Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1123-1143. doi: 10.3934/cpaa.2008.7.1123

[10]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 651-680. doi: 10.3934/cpaa.2020284

[11]

Benoît Pausader. The focusing energy-critical fourth-order Schrödinger equation with radial data. Discrete & Continuous Dynamical Systems, 2009, 24 (4) : 1275-1292. doi: 10.3934/dcds.2009.24.1275

[12]

Shaoming Guo, Xianfeng Ren, Baoxiang Wang. Local well-posedness for the derivative nonlinear Schrödinger equation with $ L^2 $-subcritical data. Discrete & Continuous Dynamical Systems, 2021, 41 (9) : 4207-4253. doi: 10.3934/dcds.2021034

[13]

Massimo Cicognani, Michael Reissig. Well-posedness for degenerate Schrödinger equations. Evolution Equations & Control Theory, 2014, 3 (1) : 15-33. doi: 10.3934/eect.2014.3.15

[14]

Huafei Di, Yadong Shang, Xiaoxiao Zheng. Global well-posedness for a fourth order pseudo-parabolic equation with memory and source terms. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 781-801. doi: 10.3934/dcdsb.2016.21.781

[15]

Takeshi Wada. A remark on local well-posedness for nonlinear Schrödinger equations with power nonlinearity-an alternative approach. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1359-1374. doi: 10.3934/cpaa.2019066

[16]

Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007

[17]

Jibin Li, Yan Zhou. Bifurcations and exact traveling wave solutions for the nonlinear Schrödinger equation with fourth-order dispersion and dual power law nonlinearity. Discrete & Continuous Dynamical Systems - S, 2020, 13 (11) : 3083-3097. doi: 10.3934/dcdss.2020113

[18]

Tarek Saanouni. Global well-posedness of some high-order semilinear wave and Schrödinger type equations with exponential nonlinearity. Communications on Pure & Applied Analysis, 2014, 13 (1) : 273-291. doi: 10.3934/cpaa.2014.13.273

[19]

Takafumi Akahori. Low regularity global well-posedness for the nonlinear Schrödinger equation on closed manifolds. Communications on Pure & Applied Analysis, 2010, 9 (2) : 261-280. doi: 10.3934/cpaa.2010.9.261

[20]

Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for a periodic nonlinear Schrödinger equation in 1D and 2D. Discrete & Continuous Dynamical Systems, 2007, 19 (1) : 37-65. doi: 10.3934/dcds.2007.19.37

2020 Impact Factor: 1.327

Article outline

[Back to Top]