• Previous Article
    Dynamics of a delayed Lotka-Volterra model with two predators competing for one prey
  • DCDS-B Home
  • This Issue
  • Next Article
    Second-order stabilized semi-implicit energy stable schemes for bubble assemblies in binary and ternary systems
doi: 10.3934/dcdsb.2021172
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Stage-structured models for interactive wild and periodically and impulsively released sterile mosquitoes

1. 

Department of Mathematical Sciences, The University of Alabama in Huntsville, Huntsville, AL 35899, USA

2. 

Center for Applied Mathematics, Guangzhou University, Guangzhou, 510006, China

* Corresponding author: Jianshe Yu

Received  February 2021 Revised  May 2021 Early access June 2021

Fund Project: This work is supported in part by National Natural Science Foundation of China (12071095, 11971127, 11631005)

A two-dimensional stage-structured model for the interactive wild and sterile mosquitoes is derived where the wild mosquito population is composed of larvae and adult classes and only sexually active sterile mosquitoes are included as a function given in advance. The strategy of constant releases of sterile mosquitoes is considered but periodic and impulsive releases are more focused on. Local stability of the origin and the existence of a positive periodic solution are investigated. While mathematical analysis is more challenging, numerical examples demonstrate that the model dynamics, determined by thresholds of the release amount and the release waiting period, essentially match the dynamics of the alike one-dimensional models. It is also shown that richer dynamics are exhibited from the two-dimensional stage-structured model.

Citation: Shangbing Ai, Jia Li, Jianshe Yu, Bo Zheng. Stage-structured models for interactive wild and periodically and impulsively released sterile mosquitoes. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021172
References:
[1]

H. J. Barclay, Pest population stability under sterile releases, Res. Popul. Ecol., 24 (1982), 405-416.  doi: 10.1007/BF02515585.  Google Scholar

[2]

H. J. Barclay, Mathematical models for the use of sterile insects, In: Sterile Insect Technique. Principles and Practice in Area-Wide Integrated Pest Management, (V.A. Dyck, J. Hendrichs, and A.S. Robinson, Eds.), Springer, Heidelberg, (2005), 147–174. doi: 10.1007/1-4020-4051-2_6.  Google Scholar

[3]

H. J. Barclay and M. Mackuer, The sterile insect release method for pest control: A density dependent model, Environ. Entomol., 9 (1980), 810-817.  doi: 10.1093/ee/9.6.810.  Google Scholar

[4]

N. Becker, Mosquitoes and Their Control, Kluwer Academic/Plenum, New York, 2003. Google Scholar

[5]

G. Briggs, The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti, PLoS Pathog., 6 (2012), e1000833. Google Scholar

[6]

L. CaiS. Ai and G. Fan, Dynamics of delayed mosquitoes populations models with two different strategies of releasing sterile mosquitoes, Math. Biosci. Engi., 15 (2018), 1181-1202.  doi: 10.3934/mbe.2018054.  Google Scholar

[7]

L. CaiS. Ai and J. Li, Dynamics of mosquitoes populations with different strategies for releasing sterile mosquitoes, SIAM J. Appl. Math., 74 (2014), 1786-1809.  doi: 10.1137/13094102X.  Google Scholar

[8]

CDC, Life cycle: The mosquito, 2021, https://www.cdc.gov/dengue/resources/factsheets/mosquitolifecyclefinal.pdf. Google Scholar

[9]

C. Dye, Intraspecific competition amongst larval aedes aegypti: Food exploitation or chemical interference, Ecol. Entomol., 7 (1982), 39-46.  doi: 10.1111/j.1365-2311.1982.tb00642.x.  Google Scholar

[10]

R. M. GleiserJ. Urrutia and D. E. Gorla, Effects of crowding on populations of aedes albifasciatus larvae under laboratory conditions., Entomologia Experimentalis et Applicata, 95 (2000), 135-140.  doi: 10.1046/j.1570-7458.2000.00651.x.  Google Scholar

[11]

L. HuM. HuangM. TangJ. Yu and B. Zheng, Wolbachiaspread dynamics in stochastic environments, Theor. Popul. Biol., 106 (2015), 32-44.  doi: 10.1016/j.tpb.2015.09.003.  Google Scholar

[12]

M. HuangX. Song and J. Li, Modeling and analysis of impulsive releases of sterile mosquitoes, J. Biol. Dyn., 11 (2017), 147-171.  doi: 10.1080/17513758.2016.1254286.  Google Scholar

[13]

M. HuangJ. LuoL. HuB. Zheng and J. Yu, Assessing the efficiency of Wolbachia driven aedes mosquito suppression by delay differential equations, J. Theor. Biol., 440 (2018), 1-11.  doi: 10.1016/j.jtbi.2017.12.012.  Google Scholar

[14]

J. Li, Simple stage-structured models for wild and transgenic mosquito populations, J. Diff. Eqns. Appl., 15 (2009), 327-347.  doi: 10.1080/10236190802566491.  Google Scholar

[15]

J. Li, Malaria model with stage-structured mosquitoes, Math. Biol. Eng., 8 (2011), 753-768.  doi: 10.3934/mbe.2011.8.753.  Google Scholar

[16]

J. Li, New revised simple models for interactive wild and sterile mosquito populations and their dynamics, J. Biol. Dyn., 11 (2017), 316-333.  doi: 10.1080/17513758.2016.1216613.  Google Scholar

[17]

J. Li and S. Ai, Impulsive releases of sterile mosquitoes and interactive dynamics with time delay, J. Biol. Dyn., 14 (2020), 289-307.  doi: 10.1080/17513758.2020.1748239.  Google Scholar

[18]

J. LiL. Cai and Y. Li, Stage-structured wild and sterile mosquito population models and their dynamics, J. Biol. Dyn., 11 (2017), 79-101.  doi: 10.1080/17513758.2016.1159740.  Google Scholar

[19]

Y. Li and X. Liu, An impulsive model for Wolbachia infection control of mosquito-borne diseases with general birth and death rate functions, Nonl. Anal. Real World Appl., 37 (2017), 421-432.  doi: 10.1016/j.nonrwa.2017.03.003.  Google Scholar

[20]

M. OteroH. G. Solari and N. Schweigmann, A stochastic population dynamics model for Aedes aegypti: Formulation and application to a city with temperate climate, Bull. Math. Biol., 68 (2006), 1945-1974.  doi: 10.1007/s11538-006-9067-y.  Google Scholar

[21]

T. Walker, P. H. Johnson and L. A. Moreika, et al., The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations, Nature, 476 (2011), 450–453. doi: 10.1038/nature10355.  Google Scholar

[22]

Wikipedia, Sterile Insect Technique, 2021, https://en.wikipedia.org/wiki/Sterile_insect_technique. Google Scholar

[23]

Z. XiC. C. Khoo and S. I. Dobson, Wolbachiaestablishment and invasion in an Aedes aegypti laboratory population, Science, 310 (2005), 326-328.  doi: 10.1126/science.1117607.  Google Scholar

[24]

J. Yu, Modelling mosquito population suppression based on delay differential equations, SIAM, J. Appl. Math., 78 (2018), 3168-3187.  doi: 10.1137/18M1204917.  Google Scholar

[25]

J. Yu, Existence and stability of a unique and exact two periodic orbits for an interactive wild and sterile mosquito model, J. Diff. Eqns, 269 (2020), 10395-10415.  doi: 10.1016/j.jde.2020.07.019.  Google Scholar

[26]

J. Yu and J. Li, Dynamics of interactive wild and sterile mosquitoes with time delay, J. Biol. Dyn., 13 (2019), 606-620.  doi: 10.1080/17513758.2019.1682201.  Google Scholar

[27]

J. Yu and J. Li, Global asymptotic stability in an interactive wild and sterile mosquito model, J. Diff. Eqns., 269 (2020), 6193-6215.  doi: 10.1016/j.jde.2020.04.036.  Google Scholar

[28]

X. ZhangS. Tang and R. A. Cheke, Models to assess how best to replace dengue virus vectors with Wolbachia-infected mosquito populations, Math. Biosci., 269 (2015), 164-177.  doi: 10.1016/j.mbs.2015.09.004.  Google Scholar

[29]

B. ZhengM. Tang and J. Yu, Modeling Wolbachia spread in mosquitoes through delay differential equation, SIAM J. Appl. Math., 74 (2014), 743-770.  doi: 10.1137/13093354X.  Google Scholar

[30]

B. ZhengM. TangJ. Yu and J. Qiu, Wolbachia spreading dynamics in mosquitoes with imperfect maternal transmission, J. Math. Biol., 76 (2018), 235-263.  doi: 10.1007/s00285-017-1142-5.  Google Scholar

[31]

X. Zheng, D. Zhang, Y. Li, C. Yang, Y. Wu and X. Liang et al., Incompatible and sterile insect techniques combined eliminate mosquitoes, Nature, 572 (2019), 56–61. doi: 10.1038/s41586-019-1407-9.  Google Scholar

show all references

References:
[1]

H. J. Barclay, Pest population stability under sterile releases, Res. Popul. Ecol., 24 (1982), 405-416.  doi: 10.1007/BF02515585.  Google Scholar

[2]

H. J. Barclay, Mathematical models for the use of sterile insects, In: Sterile Insect Technique. Principles and Practice in Area-Wide Integrated Pest Management, (V.A. Dyck, J. Hendrichs, and A.S. Robinson, Eds.), Springer, Heidelberg, (2005), 147–174. doi: 10.1007/1-4020-4051-2_6.  Google Scholar

[3]

H. J. Barclay and M. Mackuer, The sterile insect release method for pest control: A density dependent model, Environ. Entomol., 9 (1980), 810-817.  doi: 10.1093/ee/9.6.810.  Google Scholar

[4]

N. Becker, Mosquitoes and Their Control, Kluwer Academic/Plenum, New York, 2003. Google Scholar

[5]

G. Briggs, The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti, PLoS Pathog., 6 (2012), e1000833. Google Scholar

[6]

L. CaiS. Ai and G. Fan, Dynamics of delayed mosquitoes populations models with two different strategies of releasing sterile mosquitoes, Math. Biosci. Engi., 15 (2018), 1181-1202.  doi: 10.3934/mbe.2018054.  Google Scholar

[7]

L. CaiS. Ai and J. Li, Dynamics of mosquitoes populations with different strategies for releasing sterile mosquitoes, SIAM J. Appl. Math., 74 (2014), 1786-1809.  doi: 10.1137/13094102X.  Google Scholar

[8]

CDC, Life cycle: The mosquito, 2021, https://www.cdc.gov/dengue/resources/factsheets/mosquitolifecyclefinal.pdf. Google Scholar

[9]

C. Dye, Intraspecific competition amongst larval aedes aegypti: Food exploitation or chemical interference, Ecol. Entomol., 7 (1982), 39-46.  doi: 10.1111/j.1365-2311.1982.tb00642.x.  Google Scholar

[10]

R. M. GleiserJ. Urrutia and D. E. Gorla, Effects of crowding on populations of aedes albifasciatus larvae under laboratory conditions., Entomologia Experimentalis et Applicata, 95 (2000), 135-140.  doi: 10.1046/j.1570-7458.2000.00651.x.  Google Scholar

[11]

L. HuM. HuangM. TangJ. Yu and B. Zheng, Wolbachiaspread dynamics in stochastic environments, Theor. Popul. Biol., 106 (2015), 32-44.  doi: 10.1016/j.tpb.2015.09.003.  Google Scholar

[12]

M. HuangX. Song and J. Li, Modeling and analysis of impulsive releases of sterile mosquitoes, J. Biol. Dyn., 11 (2017), 147-171.  doi: 10.1080/17513758.2016.1254286.  Google Scholar

[13]

M. HuangJ. LuoL. HuB. Zheng and J. Yu, Assessing the efficiency of Wolbachia driven aedes mosquito suppression by delay differential equations, J. Theor. Biol., 440 (2018), 1-11.  doi: 10.1016/j.jtbi.2017.12.012.  Google Scholar

[14]

J. Li, Simple stage-structured models for wild and transgenic mosquito populations, J. Diff. Eqns. Appl., 15 (2009), 327-347.  doi: 10.1080/10236190802566491.  Google Scholar

[15]

J. Li, Malaria model with stage-structured mosquitoes, Math. Biol. Eng., 8 (2011), 753-768.  doi: 10.3934/mbe.2011.8.753.  Google Scholar

[16]

J. Li, New revised simple models for interactive wild and sterile mosquito populations and their dynamics, J. Biol. Dyn., 11 (2017), 316-333.  doi: 10.1080/17513758.2016.1216613.  Google Scholar

[17]

J. Li and S. Ai, Impulsive releases of sterile mosquitoes and interactive dynamics with time delay, J. Biol. Dyn., 14 (2020), 289-307.  doi: 10.1080/17513758.2020.1748239.  Google Scholar

[18]

J. LiL. Cai and Y. Li, Stage-structured wild and sterile mosquito population models and their dynamics, J. Biol. Dyn., 11 (2017), 79-101.  doi: 10.1080/17513758.2016.1159740.  Google Scholar

[19]

Y. Li and X. Liu, An impulsive model for Wolbachia infection control of mosquito-borne diseases with general birth and death rate functions, Nonl. Anal. Real World Appl., 37 (2017), 421-432.  doi: 10.1016/j.nonrwa.2017.03.003.  Google Scholar

[20]

M. OteroH. G. Solari and N. Schweigmann, A stochastic population dynamics model for Aedes aegypti: Formulation and application to a city with temperate climate, Bull. Math. Biol., 68 (2006), 1945-1974.  doi: 10.1007/s11538-006-9067-y.  Google Scholar

[21]

T. Walker, P. H. Johnson and L. A. Moreika, et al., The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations, Nature, 476 (2011), 450–453. doi: 10.1038/nature10355.  Google Scholar

[22]

Wikipedia, Sterile Insect Technique, 2021, https://en.wikipedia.org/wiki/Sterile_insect_technique. Google Scholar

[23]

Z. XiC. C. Khoo and S. I. Dobson, Wolbachiaestablishment and invasion in an Aedes aegypti laboratory population, Science, 310 (2005), 326-328.  doi: 10.1126/science.1117607.  Google Scholar

[24]

J. Yu, Modelling mosquito population suppression based on delay differential equations, SIAM, J. Appl. Math., 78 (2018), 3168-3187.  doi: 10.1137/18M1204917.  Google Scholar

[25]

J. Yu, Existence and stability of a unique and exact two periodic orbits for an interactive wild and sterile mosquito model, J. Diff. Eqns, 269 (2020), 10395-10415.  doi: 10.1016/j.jde.2020.07.019.  Google Scholar

[26]

J. Yu and J. Li, Dynamics of interactive wild and sterile mosquitoes with time delay, J. Biol. Dyn., 13 (2019), 606-620.  doi: 10.1080/17513758.2019.1682201.  Google Scholar

[27]

J. Yu and J. Li, Global asymptotic stability in an interactive wild and sterile mosquito model, J. Diff. Eqns., 269 (2020), 6193-6215.  doi: 10.1016/j.jde.2020.04.036.  Google Scholar

[28]

X. ZhangS. Tang and R. A. Cheke, Models to assess how best to replace dengue virus vectors with Wolbachia-infected mosquito populations, Math. Biosci., 269 (2015), 164-177.  doi: 10.1016/j.mbs.2015.09.004.  Google Scholar

[29]

B. ZhengM. Tang and J. Yu, Modeling Wolbachia spread in mosquitoes through delay differential equation, SIAM J. Appl. Math., 74 (2014), 743-770.  doi: 10.1137/13093354X.  Google Scholar

[30]

B. ZhengM. TangJ. Yu and J. Qiu, Wolbachia spreading dynamics in mosquitoes with imperfect maternal transmission, J. Math. Biol., 76 (2018), 235-263.  doi: 10.1007/s00285-017-1142-5.  Google Scholar

[31]

X. Zheng, D. Zhang, Y. Li, C. Yang, Y. Wu and X. Liang et al., Incompatible and sterile insect techniques combined eliminate mosquitoes, Nature, 572 (2019), 56–61. doi: 10.1038/s41586-019-1407-9.  Google Scholar

Figure 1.  Schematic illustration of the phase-plane analysis in Theorem 3.3
Figure 2.  Schematic illustration of the Poincare map in Theorem 3.3
Figure 3.  Schematic illustration of the phase-plane analysis in Theorem 3.4
Figure 4.  Parameters are given in (23) and the release amount threshold $ c^* = 4.35979 $. With $ c = 3 < c^* $, the threshold waiting period threshold $ T^* $ seems between 6 and 7. When $ T = 6 $, the origin is locally, not globally, asymptotically stable and there exists a locally asymptotically stable positive periodic solution as shown in the left figure. When $ T = 7 $, there exists a globally asymptotically stable positive periodic solution as shown in the right figure. Here only the solution curves for the larvae are presented
Figure 5.  Parameters are still given in (23) with the same release amount threshold $ c^* = 4.35979 $, but now $ c = 6 > c^* $. When $ T = 5.5 $, the origin is globally asymptotically stable as shown in the left figure, and when $ T = 7 $ there exists a globally asymptotically stable positive periodic solution as shown in the right figure. Here again only the solution curves for the larvae are presented
Figure 6.  With the same parameters in (23), and also the same $ c = 6 > c^* = 4.35979 $ when $ T = 6 $, the origin is only locally asymptotically stable and there exists a locally asymptotically stable positive periodic solution
[1]

Yao Xu, Weisheng Niu. Periodic homogenization of elliptic systems with stratified structure. Discrete & Continuous Dynamical Systems, 2019, 39 (4) : 2295-2323. doi: 10.3934/dcds.2019097

[2]

Pavel Drábek, Martina Langerová. Impulsive control of conservative periodic equations and systems: Variational approach. Discrete & Continuous Dynamical Systems, 2018, 38 (8) : 3789-3802. doi: 10.3934/dcds.2018164

[3]

Jin Liang, James H. Liu, Ti-Jun Xiao. Condensing operators and periodic solutions of infinite delay impulsive evolution equations. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 475-485. doi: 10.3934/dcdss.2017023

[4]

Guo Lin, Shuxia Pan. Periodic traveling wave solutions of periodic integrodifference systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 3005-3031. doi: 10.3934/dcdsb.2020049

[5]

Jaume Llibre, Claudio Vidal. Hopf periodic orbits for a ratio--dependent predator--prey model with stage structure. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1859-1867. doi: 10.3934/dcdsb.2016026

[6]

João Fialho, Feliz Minhós. High order periodic impulsive problems. Conference Publications, 2015, 2015 (special) : 446-454. doi: 10.3934/proc.2015.0446

[7]

Hongyan Yin, Cuihong Yang, Xin'an Zhang, Jia Li. The impact of releasing sterile mosquitoes on malaria transmission. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3837-3853. doi: 10.3934/dcdsb.2018113

[8]

Thomas I. Seidman, Olaf Klein. Periodic solutions of isotone hybrid systems. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 483-493. doi: 10.3934/dcdsb.2013.18.483

[9]

J. R. Ward. Periodic solutions of first order systems. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 381-389. doi: 10.3934/dcds.2013.33.381

[10]

Jean-Jérôme Casanova. Existence of time-periodic strong solutions to a fluid–structure system. Discrete & Continuous Dynamical Systems, 2019, 39 (6) : 3291-3313. doi: 10.3934/dcds.2019136

[11]

Adriana Buică, Jean–Pierre Françoise, Jaume Llibre. Periodic solutions of nonlinear periodic differential systems with a small parameter. Communications on Pure & Applied Analysis, 2007, 6 (1) : 103-111. doi: 10.3934/cpaa.2007.6.103

[12]

Feng-Bin Wang. A periodic reaction-diffusion model with a quiescent stage. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 283-295. doi: 10.3934/dcdsb.2012.17.283

[13]

Jehad O. Alzabut. A necessary and sufficient condition for the existence of periodic solutions of linear impulsive differential equations with distributed delay. Conference Publications, 2007, 2007 (Special) : 35-43. doi: 10.3934/proc.2007.2007.35

[14]

Jiawei Dou, Lan-sun Chen, Kaitai Li. A monotone-iterative method for finding periodic solutions of an impulsive competition system on tumor-normal cell interaction. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 555-562. doi: 10.3934/dcdsb.2004.4.555

[15]

Michal Fečkan, Kui Liu, JinRong Wang. $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021006

[16]

Tianqing An, Zhi-Qiang Wang. Periodic solutions of Hamiltonian systems with anisotropic growth. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1069-1082. doi: 10.3934/cpaa.2010.9.1069

[17]

Alessandro Fonda, Andrea Sfecci. Multiple periodic solutions of Hamiltonian systems confined in a box. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1425-1436. doi: 10.3934/dcds.2017059

[18]

Zhengxin Zhou. On the Poincaré mapping and periodic solutions of nonautonomous differential systems. Communications on Pure & Applied Analysis, 2007, 6 (2) : 541-547. doi: 10.3934/cpaa.2007.6.541

[19]

Claudia Valls. On the quasi-periodic solutions of generalized Kaup systems. Discrete & Continuous Dynamical Systems, 2015, 35 (1) : 467-482. doi: 10.3934/dcds.2015.35.467

[20]

Pablo Amster, Mónica Clapp. Periodic solutions of resonant systems with rapidly rotating nonlinearities. Discrete & Continuous Dynamical Systems, 2011, 31 (2) : 373-383. doi: 10.3934/dcds.2011.31.373

2020 Impact Factor: 1.327

Article outline

Figures and Tables

[Back to Top]