• Previous Article
    Dynamics of fractional nonclassical diffusion equations with delay driven by additive noise on $ \mathbb{R}^n $
  • DCDS-B Home
  • This Issue
  • Next Article
    Galerkin spectral method for elliptic optimal control problem with $L^2$-norm control constraint
doi: 10.3934/dcdsb.2021187
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Optimal spiral-like solutions near a singular extremal in a two-input control problem

1. 

HSE University, Moscow State Institute of Electronics and Mathematics, Moscow, Russia

2. 

National University of Oil and Gas ``Gubkin University", Moscow, Russia

* Corresponding author: Larisa Manita

Received  January 2020 Revised  May 2021 Early access July 2021

We study an optimal control problem affine in two-dimensional bounded control, in which there is a singular point of the second order. In the neighborhood of the singular point we find optimal spiral-like solutions that attain the singular point in finite time, wherein the corresponding optimal controls perform an infinite number of rotations along the circle $ S^{1} $. The problem is related to the control of an inverted spherical pendulum in the neighborhood of the upper unstable equilibrium.

Citation: Larisa Manita, Mariya Ronzhina. Optimal spiral-like solutions near a singular extremal in a two-input control problem. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021187
References:
[1]

A. A. Agrachev and Y. L. Sachkov, Control Theory from the Geometric Viewpoint, vol. 87 of Encyclopaedia of Mathematical Sciences, Springer-Verlag Berlin Heidelberg, 2004. doi: 10.1007/978-3-662-06404-7.  Google Scholar

[2]

D. Angeli, Almost global stabilization of the inverted pendulum via continuous state feedback, Automatica, 37 (2001), 1103-1108.  doi: 10.1016/S0005-1098(01)00064-4.  Google Scholar

[3]

N. D. AnhH. MatsuhisaL. D. Viet and M. Yasuda, Vibration control of an inverted pendulum type structure by passive mass-spring-pendulum dynamic vibration absorber, Journal of Sound and Vibration, 307 (2007), 187-201.  doi: 10.1016/j.jsv.2007.06.060.  Google Scholar

[4]

K. J. ÅströmJ. Aracil and F. Gordillo, A family of smooth controllers for swinging up a pendulum, Automatica J. IFAC, 44 (2008), 1841-1848.  doi: 10.1016/j.automatica.2007.10.040.  Google Scholar

[5]

K. J. Åström and K. Furuta, Swinging up a pendulum by energy control, Automatica J. IFAC, 36 (2000), 287-295.  doi: 10.1016/S0005-1098(99)00140-5.  Google Scholar

[6]

A. M. BlochN. E. Leonard and J. E. Marsden, Matching and stabilization by the method of controlled lagrangians, Proceedings of the 37th IEEE Conference on Decision and Control, 2 (1998), 1446-1451.  doi: 10.1109/CDC.1998.758490.  Google Scholar

[7]

A. M. BlochN. E. Leonard and J. E. Marsden, Controlled Lagrangians and the stabilization of mechanical systems I: The first matching theorem, IEEE Trans. Automat. Control, 45 (2000), 2253-2270.  doi: 10.1109/9.895562.  Google Scholar

[8]

F. BoarottoY. Chitour and M. Sigalotti, Fuller singularities for generic control-affine systems with an even number of controls, SIAM J. Control Optim., 58 (2020), 1207-1228.  doi: 10.1137/19M1285305.  Google Scholar

[9]

F. Boarotto and M. Sigalotti, Time-optimal trajectories of generic control-affine systems have at worst iterated Fuller singularities, Ann. Inst. H. Poincaré Anal. Non Linéaire, 36 (2019), 327-346.  doi: 10.1016/j.anihpc.2018.05.005.  Google Scholar

[10]

B. Bonnard and M. Chyba, Singular Trajectories and their Role in Control Theory, 40 of Mathématiques et Applications, Springer-Verlag Berlin Heidelberg, 2003.  Google Scholar

[11]

V. F. Borisov, Kelley condition and structure of Lagrange manifold in a neighborhood of a first-order singular extremal, J. Math. Sci. (N.Y.), 151 (2008), 3431-3472.  doi: 10.1007/s10958-008-9046-y.  Google Scholar

[12]

M. CaponigroR. GhezziB. Piccoli and E. Trélat, Regularization of chattering phenomena via bounded variation controls, IEEE Trans. Automat. Control, 63 (2018), 2046-2060.  doi: 10.1109/TAC.2018.2810540.  Google Scholar

[13]

N. A. ChaturvediN. H. McClamroch and D. S. Bernstein, Asymptotic smooth stabilization of the inverted 3-d pendulum, IEEE Trans. Automat. Control, 54 (2009), 1204-1215.  doi: 10.1109/TAC.2009.2019792.  Google Scholar

[14]

F. L. Chernousko and S. A. Reshmin, Time-optimal swing-up feedback control of a pendulum, Nonlinear Dynam., 47 (2007), 65-73.  doi: 10.1007/s11071-006-9059-3.  Google Scholar

[15]

S. V. Chukanov and A. A. Milyutin, Qualitative study of singularities for extremals of quadratic optimal control problem, Russian J. Math. Phys., 2 (1994), 31-48.   Google Scholar

[16]

M. ChybaN. E. Leonard and E. D. Sontag, Singular trajectories in multi-input time-optimal problems: Application to controlled mechanical systems, J. Dynam. Control Systems, 9 (2003), 103-129.  doi: 10.1023/A:1022159318457.  Google Scholar

[17]

A. Elhasairi and A. Pechev, Humanoid robot balance control using the spherical inverted pendulum mode, Frontiers in Robotics and AI, 2 (2015), 1-13.  doi: 10.3389/frobt.2015.00021.  Google Scholar

[18]

M. Farkas, Periodic Motions, New York: Springer-Verlag, 1994. doi: 10.1007/978-1-4757-4211-4.  Google Scholar

[19]

R. Fujimoto and N. Sakamoto, The stable manifold approach for optimal swing up and stabilization of an inverted pendulum with input saturation, IFAC Proceedings Volumes, 44 (2011), 8046-8051.  doi: 10.3182/20110828-6-IT-1002.01504.  Google Scholar

[20]

B. S. Goh, Optimal singular rocket and aircraft trajectories, in 2008 Chinese Control and Decision Conference, (2008), 1531–1536. doi: 10.1109/CCDC.2008.4597574.  Google Scholar

[21]

O. O. Gutiérrez F.C. Aguilar Ibáñez and H. Sossa A., Stabilization of the inverted spherical pendulum via Lyapunov approach, Asian J. Control, 11 (2009), 587-594.  doi: 10.1002/asjc.140.  Google Scholar

[22]

P. Hartman, Ordinary Differential Equations, J. Wiley & Sons, New York, London, Sydney, 1964.  Google Scholar

[23]

P. L. Kapitza, Dynamic stability of the pendulum with vibrating suspension point, Soviet Physics –- JETP, 21 (1951), 588-597.   Google Scholar

[24]

I. A. K. Kupka, The ubiquity of Fuller's phenomenon, Nonlinear Controllability and Optimal Control, 133 (1990), 313-350.   Google Scholar

[25]

U. Ledzewicz and H. Schättler, Singular controls and chattering arcs in optimal control problems arising in biomedicine, Control Cybernet., 38 (2009), 1501-1523.   Google Scholar

[26]

U. Ledzewicz and H. Schättler, Multi-input optimal control problems for combined tumor anti-angiogenic and radiotherapy treatments, J. Optim. Theory Appl., 153 (2012), 195-224.  doi: 10.1007/s10957-011-9954-8.  Google Scholar

[27]

T. Lee, M. Leok and N. H. McClamroch, Dynamics and control of a chain pendulum on a cart, in 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), (2012), 2502–2508. doi: 10.1109/CDC.2012.6427059.  Google Scholar

[28]

G. LiuD. Nešić and I. Mareels, Non-local stabilization of a spherical inverted pendulum, Internat. J. Control, 81 (2008), 1035-1053.  doi: 10.1080/00207170701397541.  Google Scholar

[29]

L. V. Lokutsievskiy and V. A. Myrikova, Optimal synthesis in a model problem with two-dimensional control lying in an arbitrary convex set, Math. Notes, 105 (2019), 36-55.  doi: 10.1134/S000143461901005X.  Google Scholar

[30]

L. A. Manita, Optimal operating modes with chattering switching in manipulator control problems, J. Appl. Math. Mech., 64 (2000), 17-24.  doi: 10.1016/S0021-8928(00)00021-6.  Google Scholar

[31]

L. Manita and M. Ronzhina, Optimal control of a spherical inverted pendulum, Lobachevskii J. Math., 38 (2017), 954-957.  doi: 10.1134/S1995080217050262.  Google Scholar

[32]

L. A. Manita and M. I. Ronzhina, Optimal synthesis in the control problem of an $n$-link inverted pendulum with a moving base, J. Math. Sci. (N.Y.), 221 (2017), 137-153.  doi: 10.1007/s10958-017-3222-x.  Google Scholar

[33]

Yu. G. Martynenko and A. M. Formal'skii, Controlled pendulum on a movable base, Mechanics of Solids, 43 (2013), 6-18.  doi: 10.3103/S0025654413010020.  Google Scholar

[34]

F. NicolosiP. D. Vecchia and D. Ciliberti, An investigation on vertical tailplane contribution to aircraft sideforce, Aerospace Science and Technology, 28 (2013), 401-416.  doi: 10.1016/j.ast.2012.12.006.  Google Scholar

[35]

R. Olfati-Saber, Fixed point controllers and stabilization of the cart-pole system and the rotating pendulum, Proceedings of the 38th IEEE Conference on Decision and Control, 2 (1999), 1174-1181.  doi: 10.1109/CDC.1999.830086.  Google Scholar

[36]

C. Park, Necessary conditions for the optimality of singular arcs of spacecraft trajectories subject to multiple gravitational bodies, Advances in Space Research, 51 (2013), 2125-2135.  doi: 10.1016/j.asr.2013.01.005.  Google Scholar

[37]

L. Postelnik, G. Liu, K. Stol and A. Swain, Approximate output regulation for a spherical inverted pendulum, in Proceedings of the 2011 American Control Conference, (2011), 539–544. doi: 10.1109/ACC.2011.5991533.  Google Scholar

[38]

R.-E. Precup, S. Preitl, J. Fodor, I.-B. Ursache, P. A. Clep and S. Kilyeni, Experimental validation of iterative feedback tuning solutions for inverted pendulum crane mode control, in 2008 Conference on Human System Interactions, (2008), 536–541. doi: 10.1109/HSI.2008.4581496.  Google Scholar

[39]

D. B. Reister and S. M. Lenhart, Time-optimal paths for high-speed maneuvering, The International Journal of Robotics Research, 14 (1995), 184-194.  doi: 10.1177/027836499501400208.  Google Scholar

[40]

H. M. Robbins, Optimality of intermediate-thrust arcs of rocket trajectories, AIAA J., 3 (1965), 1094-1098.  doi: 10.2514/3.3060.  Google Scholar

[41]

M. I. Ronzhina, L. A. Manita and L. V. Lokutsievskii, Solutions of a Hamiltonian system with two-dimensional control in the neighborhood of a singular extremal of the second order, Russian Mathematical Surveys, (in the press) (2021), 2 pp. Google Scholar

[42]

H. Schättler and U. Ledzewicz, Geometric Optimal Control, vol. 38 of ser. Interdisciplinary Applied Mathematics, Springer, New York, 2012. doi: 10.1007/978-1-4614-3834-2.  Google Scholar

[43]

H. Seywald and R. R. Kumar, Singular control in minimum time spacecraft reorientation, Journal of Guidance, Control, and Dynamics, 16 (1993), 686-697.  doi: 10.2514/6.1991-2645.  Google Scholar

[44]

H. Shen and P. Tsiotras, Time-optimal control of axi-symmetric rigid spacecraft using two controls, Journal of Guidance, Control, and Dynamics, 22 (1999), 682-694.  doi: 10.2514/2.4436.  Google Scholar

[45]

A. S. ShiriaevH. Ludvigsen and O. Egeland, Swinging up the spherical pendulum via stabilization of its first integrals, Automatica J. IFAC, 40 (2004), 73-85.  doi: 10.1016/j.automatica.2003.07.009.  Google Scholar

[46]

A. Stephenson, On induced stability, Philosophical Magazine, 15 (1908), 233-236.  doi: 10.1080/14786440809463763.  Google Scholar

[47]

Y. XuM. Iwase and K. Furuta, Time optimal swing-up control of single pendulum, J. Dyn. Sys., Meas., Control, 123 (2001), 518-527.  doi: 10.1115/1.1383027.  Google Scholar

[48]

I. YegorovA. Bratus and Y. Todorov, Synthesis of optimal control in a mathematical model of economic growth under R & D investments, Applied Mathematical Sciences, 9 (2015), 4523-4564.  doi: 10.12988/ams.2015.55404.  Google Scholar

[49]

I. YegorovF. Mairet and J.-L. Gouzé, Optimal feedback strategies for bacterial growth with degradation, recycling and effect of temperature, Optimal Control Applications and Methods, 39 (2018), 1084-1109.  doi: 10.1002/oca.2398.  Google Scholar

[50]

M. I. Zelikin, One-parameter families of solutions to a class of PDE optimal control problems, Contemp. Math., 209 (1997), 339-349.  doi: 10.1090/conm/209/02774.  Google Scholar

[51]

M. I. Zelikin and V. F. Borisov, Theory of Chattering Control with Applications to Astronautics, Robotics, Economics, and Engineering, Birkhäuser, Boston, 1994. doi: 10.1007/978-1-4612-2702-1.  Google Scholar

[52]

M. I. Zelikin and V. F. Borisov, Optimal chattering feedback control, Journal of Mathematical Sciences, 114 (2003), 1227-1344.  doi: 10.1023/A:1022082011808.  Google Scholar

[53]

M. I. Zelikin and V. F. Borisov, Singular optimal regimes in problems of mathematical economics, J. Math. Sci. (N.Y.), 130 (2005), 4409-4570.  doi: 10.1007/s10958-005-0350-5.  Google Scholar

[54]

M. I. ZelikinL. V. Lokutsievskii and R. Hildebrand, Typicality of chaotic fractal behavior of integral vortices in Hamiltonian systems with discontinuous right hand side, J. Math. Sci. (N.Y.), 221 (2017), 1-136.  doi: 10.1007/s10958-017-3221-y.  Google Scholar

[55]

M. I. Zelikin and L. A. Manita, Optimal control for a Timoshenko beam, Comptes Rendus Mécanique, 334 (2006), 292-297.  doi: 10.1016/j.crme.2006.03.011.  Google Scholar

[56]

M. I. Zelikin and L. F. Zelikina, The deviation of a functional from its optimal value under chattering decreases exponentially as the number of switchings grows, Differential Equations, 35 (1999), 1489-1493.   Google Scholar

[57]

J. ZhuE. Trélat and M. Cerf, Minimum time control of the rocket attitude reorientation associated with orbit dynamics, SIAM J. Control Optim., 54 (2016), 391-422.  doi: 10.1137/15M1028716.  Google Scholar

[58]

J. ZhuE. Trélat and M. Cerf, Planar tilting maneuver of a spacecraft: Singular arcs in the minimum time problem and chattering, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 1347-1388.  doi: 10.3934/dcdsb.2016.21.1347.  Google Scholar

show all references

References:
[1]

A. A. Agrachev and Y. L. Sachkov, Control Theory from the Geometric Viewpoint, vol. 87 of Encyclopaedia of Mathematical Sciences, Springer-Verlag Berlin Heidelberg, 2004. doi: 10.1007/978-3-662-06404-7.  Google Scholar

[2]

D. Angeli, Almost global stabilization of the inverted pendulum via continuous state feedback, Automatica, 37 (2001), 1103-1108.  doi: 10.1016/S0005-1098(01)00064-4.  Google Scholar

[3]

N. D. AnhH. MatsuhisaL. D. Viet and M. Yasuda, Vibration control of an inverted pendulum type structure by passive mass-spring-pendulum dynamic vibration absorber, Journal of Sound and Vibration, 307 (2007), 187-201.  doi: 10.1016/j.jsv.2007.06.060.  Google Scholar

[4]

K. J. ÅströmJ. Aracil and F. Gordillo, A family of smooth controllers for swinging up a pendulum, Automatica J. IFAC, 44 (2008), 1841-1848.  doi: 10.1016/j.automatica.2007.10.040.  Google Scholar

[5]

K. J. Åström and K. Furuta, Swinging up a pendulum by energy control, Automatica J. IFAC, 36 (2000), 287-295.  doi: 10.1016/S0005-1098(99)00140-5.  Google Scholar

[6]

A. M. BlochN. E. Leonard and J. E. Marsden, Matching and stabilization by the method of controlled lagrangians, Proceedings of the 37th IEEE Conference on Decision and Control, 2 (1998), 1446-1451.  doi: 10.1109/CDC.1998.758490.  Google Scholar

[7]

A. M. BlochN. E. Leonard and J. E. Marsden, Controlled Lagrangians and the stabilization of mechanical systems I: The first matching theorem, IEEE Trans. Automat. Control, 45 (2000), 2253-2270.  doi: 10.1109/9.895562.  Google Scholar

[8]

F. BoarottoY. Chitour and M. Sigalotti, Fuller singularities for generic control-affine systems with an even number of controls, SIAM J. Control Optim., 58 (2020), 1207-1228.  doi: 10.1137/19M1285305.  Google Scholar

[9]

F. Boarotto and M. Sigalotti, Time-optimal trajectories of generic control-affine systems have at worst iterated Fuller singularities, Ann. Inst. H. Poincaré Anal. Non Linéaire, 36 (2019), 327-346.  doi: 10.1016/j.anihpc.2018.05.005.  Google Scholar

[10]

B. Bonnard and M. Chyba, Singular Trajectories and their Role in Control Theory, 40 of Mathématiques et Applications, Springer-Verlag Berlin Heidelberg, 2003.  Google Scholar

[11]

V. F. Borisov, Kelley condition and structure of Lagrange manifold in a neighborhood of a first-order singular extremal, J. Math. Sci. (N.Y.), 151 (2008), 3431-3472.  doi: 10.1007/s10958-008-9046-y.  Google Scholar

[12]

M. CaponigroR. GhezziB. Piccoli and E. Trélat, Regularization of chattering phenomena via bounded variation controls, IEEE Trans. Automat. Control, 63 (2018), 2046-2060.  doi: 10.1109/TAC.2018.2810540.  Google Scholar

[13]

N. A. ChaturvediN. H. McClamroch and D. S. Bernstein, Asymptotic smooth stabilization of the inverted 3-d pendulum, IEEE Trans. Automat. Control, 54 (2009), 1204-1215.  doi: 10.1109/TAC.2009.2019792.  Google Scholar

[14]

F. L. Chernousko and S. A. Reshmin, Time-optimal swing-up feedback control of a pendulum, Nonlinear Dynam., 47 (2007), 65-73.  doi: 10.1007/s11071-006-9059-3.  Google Scholar

[15]

S. V. Chukanov and A. A. Milyutin, Qualitative study of singularities for extremals of quadratic optimal control problem, Russian J. Math. Phys., 2 (1994), 31-48.   Google Scholar

[16]

M. ChybaN. E. Leonard and E. D. Sontag, Singular trajectories in multi-input time-optimal problems: Application to controlled mechanical systems, J. Dynam. Control Systems, 9 (2003), 103-129.  doi: 10.1023/A:1022159318457.  Google Scholar

[17]

A. Elhasairi and A. Pechev, Humanoid robot balance control using the spherical inverted pendulum mode, Frontiers in Robotics and AI, 2 (2015), 1-13.  doi: 10.3389/frobt.2015.00021.  Google Scholar

[18]

M. Farkas, Periodic Motions, New York: Springer-Verlag, 1994. doi: 10.1007/978-1-4757-4211-4.  Google Scholar

[19]

R. Fujimoto and N. Sakamoto, The stable manifold approach for optimal swing up and stabilization of an inverted pendulum with input saturation, IFAC Proceedings Volumes, 44 (2011), 8046-8051.  doi: 10.3182/20110828-6-IT-1002.01504.  Google Scholar

[20]

B. S. Goh, Optimal singular rocket and aircraft trajectories, in 2008 Chinese Control and Decision Conference, (2008), 1531–1536. doi: 10.1109/CCDC.2008.4597574.  Google Scholar

[21]

O. O. Gutiérrez F.C. Aguilar Ibáñez and H. Sossa A., Stabilization of the inverted spherical pendulum via Lyapunov approach, Asian J. Control, 11 (2009), 587-594.  doi: 10.1002/asjc.140.  Google Scholar

[22]

P. Hartman, Ordinary Differential Equations, J. Wiley & Sons, New York, London, Sydney, 1964.  Google Scholar

[23]

P. L. Kapitza, Dynamic stability of the pendulum with vibrating suspension point, Soviet Physics –- JETP, 21 (1951), 588-597.   Google Scholar

[24]

I. A. K. Kupka, The ubiquity of Fuller's phenomenon, Nonlinear Controllability and Optimal Control, 133 (1990), 313-350.   Google Scholar

[25]

U. Ledzewicz and H. Schättler, Singular controls and chattering arcs in optimal control problems arising in biomedicine, Control Cybernet., 38 (2009), 1501-1523.   Google Scholar

[26]

U. Ledzewicz and H. Schättler, Multi-input optimal control problems for combined tumor anti-angiogenic and radiotherapy treatments, J. Optim. Theory Appl., 153 (2012), 195-224.  doi: 10.1007/s10957-011-9954-8.  Google Scholar

[27]

T. Lee, M. Leok and N. H. McClamroch, Dynamics and control of a chain pendulum on a cart, in 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), (2012), 2502–2508. doi: 10.1109/CDC.2012.6427059.  Google Scholar

[28]

G. LiuD. Nešić and I. Mareels, Non-local stabilization of a spherical inverted pendulum, Internat. J. Control, 81 (2008), 1035-1053.  doi: 10.1080/00207170701397541.  Google Scholar

[29]

L. V. Lokutsievskiy and V. A. Myrikova, Optimal synthesis in a model problem with two-dimensional control lying in an arbitrary convex set, Math. Notes, 105 (2019), 36-55.  doi: 10.1134/S000143461901005X.  Google Scholar

[30]

L. A. Manita, Optimal operating modes with chattering switching in manipulator control problems, J. Appl. Math. Mech., 64 (2000), 17-24.  doi: 10.1016/S0021-8928(00)00021-6.  Google Scholar

[31]

L. Manita and M. Ronzhina, Optimal control of a spherical inverted pendulum, Lobachevskii J. Math., 38 (2017), 954-957.  doi: 10.1134/S1995080217050262.  Google Scholar

[32]

L. A. Manita and M. I. Ronzhina, Optimal synthesis in the control problem of an $n$-link inverted pendulum with a moving base, J. Math. Sci. (N.Y.), 221 (2017), 137-153.  doi: 10.1007/s10958-017-3222-x.  Google Scholar

[33]

Yu. G. Martynenko and A. M. Formal'skii, Controlled pendulum on a movable base, Mechanics of Solids, 43 (2013), 6-18.  doi: 10.3103/S0025654413010020.  Google Scholar

[34]

F. NicolosiP. D. Vecchia and D. Ciliberti, An investigation on vertical tailplane contribution to aircraft sideforce, Aerospace Science and Technology, 28 (2013), 401-416.  doi: 10.1016/j.ast.2012.12.006.  Google Scholar

[35]

R. Olfati-Saber, Fixed point controllers and stabilization of the cart-pole system and the rotating pendulum, Proceedings of the 38th IEEE Conference on Decision and Control, 2 (1999), 1174-1181.  doi: 10.1109/CDC.1999.830086.  Google Scholar

[36]

C. Park, Necessary conditions for the optimality of singular arcs of spacecraft trajectories subject to multiple gravitational bodies, Advances in Space Research, 51 (2013), 2125-2135.  doi: 10.1016/j.asr.2013.01.005.  Google Scholar

[37]

L. Postelnik, G. Liu, K. Stol and A. Swain, Approximate output regulation for a spherical inverted pendulum, in Proceedings of the 2011 American Control Conference, (2011), 539–544. doi: 10.1109/ACC.2011.5991533.  Google Scholar

[38]

R.-E. Precup, S. Preitl, J. Fodor, I.-B. Ursache, P. A. Clep and S. Kilyeni, Experimental validation of iterative feedback tuning solutions for inverted pendulum crane mode control, in 2008 Conference on Human System Interactions, (2008), 536–541. doi: 10.1109/HSI.2008.4581496.  Google Scholar

[39]

D. B. Reister and S. M. Lenhart, Time-optimal paths for high-speed maneuvering, The International Journal of Robotics Research, 14 (1995), 184-194.  doi: 10.1177/027836499501400208.  Google Scholar

[40]

H. M. Robbins, Optimality of intermediate-thrust arcs of rocket trajectories, AIAA J., 3 (1965), 1094-1098.  doi: 10.2514/3.3060.  Google Scholar

[41]

M. I. Ronzhina, L. A. Manita and L. V. Lokutsievskii, Solutions of a Hamiltonian system with two-dimensional control in the neighborhood of a singular extremal of the second order, Russian Mathematical Surveys, (in the press) (2021), 2 pp. Google Scholar

[42]

H. Schättler and U. Ledzewicz, Geometric Optimal Control, vol. 38 of ser. Interdisciplinary Applied Mathematics, Springer, New York, 2012. doi: 10.1007/978-1-4614-3834-2.  Google Scholar

[43]

H. Seywald and R. R. Kumar, Singular control in minimum time spacecraft reorientation, Journal of Guidance, Control, and Dynamics, 16 (1993), 686-697.  doi: 10.2514/6.1991-2645.  Google Scholar

[44]

H. Shen and P. Tsiotras, Time-optimal control of axi-symmetric rigid spacecraft using two controls, Journal of Guidance, Control, and Dynamics, 22 (1999), 682-694.  doi: 10.2514/2.4436.  Google Scholar

[45]

A. S. ShiriaevH. Ludvigsen and O. Egeland, Swinging up the spherical pendulum via stabilization of its first integrals, Automatica J. IFAC, 40 (2004), 73-85.  doi: 10.1016/j.automatica.2003.07.009.  Google Scholar

[46]

A. Stephenson, On induced stability, Philosophical Magazine, 15 (1908), 233-236.  doi: 10.1080/14786440809463763.  Google Scholar

[47]

Y. XuM. Iwase and K. Furuta, Time optimal swing-up control of single pendulum, J. Dyn. Sys., Meas., Control, 123 (2001), 518-527.  doi: 10.1115/1.1383027.  Google Scholar

[48]

I. YegorovA. Bratus and Y. Todorov, Synthesis of optimal control in a mathematical model of economic growth under R & D investments, Applied Mathematical Sciences, 9 (2015), 4523-4564.  doi: 10.12988/ams.2015.55404.  Google Scholar

[49]

I. YegorovF. Mairet and J.-L. Gouzé, Optimal feedback strategies for bacterial growth with degradation, recycling and effect of temperature, Optimal Control Applications and Methods, 39 (2018), 1084-1109.  doi: 10.1002/oca.2398.  Google Scholar

[50]

M. I. Zelikin, One-parameter families of solutions to a class of PDE optimal control problems, Contemp. Math., 209 (1997), 339-349.  doi: 10.1090/conm/209/02774.  Google Scholar

[51]

M. I. Zelikin and V. F. Borisov, Theory of Chattering Control with Applications to Astronautics, Robotics, Economics, and Engineering, Birkhäuser, Boston, 1994. doi: 10.1007/978-1-4612-2702-1.  Google Scholar

[52]

M. I. Zelikin and V. F. Borisov, Optimal chattering feedback control, Journal of Mathematical Sciences, 114 (2003), 1227-1344.  doi: 10.1023/A:1022082011808.  Google Scholar

[53]

M. I. Zelikin and V. F. Borisov, Singular optimal regimes in problems of mathematical economics, J. Math. Sci. (N.Y.), 130 (2005), 4409-4570.  doi: 10.1007/s10958-005-0350-5.  Google Scholar

[54]

M. I. ZelikinL. V. Lokutsievskii and R. Hildebrand, Typicality of chaotic fractal behavior of integral vortices in Hamiltonian systems with discontinuous right hand side, J. Math. Sci. (N.Y.), 221 (2017), 1-136.  doi: 10.1007/s10958-017-3221-y.  Google Scholar

[55]

M. I. Zelikin and L. A. Manita, Optimal control for a Timoshenko beam, Comptes Rendus Mécanique, 334 (2006), 292-297.  doi: 10.1016/j.crme.2006.03.011.  Google Scholar

[56]

M. I. Zelikin and L. F. Zelikina, The deviation of a functional from its optimal value under chattering decreases exponentially as the number of switchings grows, Differential Equations, 35 (1999), 1489-1493.   Google Scholar

[57]

J. ZhuE. Trélat and M. Cerf, Minimum time control of the rocket attitude reorientation associated with orbit dynamics, SIAM J. Control Optim., 54 (2016), 391-422.  doi: 10.1137/15M1028716.  Google Scholar

[58]

J. ZhuE. Trélat and M. Cerf, Planar tilting maneuver of a spacecraft: Singular arcs in the minimum time problem and chattering, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 1347-1388.  doi: 10.3934/dcdsb.2016.21.1347.  Google Scholar

Figure 1.  Optimal chattering solutions in P1
Figure 2.  Solutions of the blown-up Hamiltonian system that lie on $ Q $ and tend to $ \xi^{0} $
Figure 3.  The inverted spherical pendulum
[1]

Jean Dolbeault, Christian Schmeiser. The two-dimensional Keller-Segel model after blow-up. Discrete & Continuous Dynamical Systems, 2009, 25 (1) : 109-121. doi: 10.3934/dcds.2009.25.109

[2]

Xin Zhong. A blow-up criterion of strong solutions to two-dimensional nonhomogeneous micropolar fluid equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2020, 25 (12) : 4603-4615. doi: 10.3934/dcdsb.2020115

[3]

Katrin Grunert. Blow-up for the two-component Camassa--Holm system. Discrete & Continuous Dynamical Systems, 2015, 35 (5) : 2041-2051. doi: 10.3934/dcds.2015.35.2041

[4]

Yubai Liu, Xueshan Gao, Fuquan Dai. Implementation of Mamdami fuzzy control on a multi-DOF two-wheel inverted pendulum robot. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1251-1266. doi: 10.3934/dcdss.2015.8.1251

[5]

Xin Zhong. Singularity formation to the two-dimensional non-barotropic non-resistive magnetohydrodynamic equations with zero heat conduction in a bounded domain. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1083-1096. doi: 10.3934/dcdsb.2019209

[6]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[7]

Yūki Naito, Takasi Senba. Blow-up behavior of solutions to a parabolic-elliptic system on higher dimensional domains. Discrete & Continuous Dynamical Systems, 2012, 32 (10) : 3691-3713. doi: 10.3934/dcds.2012.32.3691

[8]

Vural Bayrak, Emil Novruzov, Ibrahim Ozkol. Local-in-space blow-up criteria for two-component nonlinear dispersive wave system. Discrete & Continuous Dynamical Systems, 2019, 39 (10) : 6023-6037. doi: 10.3934/dcds.2019263

[9]

Yan Li. Emergence of large densities and simultaneous blow-up in a two-species chemotaxis system with competitive kinetics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5461-5480. doi: 10.3934/dcdsb.2019066

[10]

Xiuting Li, Lei Zhang. The Cauchy problem and blow-up phenomena for a new integrable two-component peakon system with cubic nonlinearities. Discrete & Continuous Dynamical Systems, 2017, 37 (6) : 3301-3325. doi: 10.3934/dcds.2017140

[11]

Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225

[12]

Satyanad Kichenassamy. Control of blow-up singularities for nonlinear wave equations. Evolution Equations & Control Theory, 2013, 2 (4) : 669-677. doi: 10.3934/eect.2013.2.669

[13]

Miaoqing Tian, Sining Zheng. Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species. Communications on Pure & Applied Analysis, 2016, 15 (1) : 243-260. doi: 10.3934/cpaa.2016.15.243

[14]

Lei Zhang, Bin Liu. Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system. Discrete & Continuous Dynamical Systems, 2018, 38 (5) : 2655-2685. doi: 10.3934/dcds.2018112

[15]

Min Chen. Numerical investigation of a two-dimensional Boussinesq system. Discrete & Continuous Dynamical Systems, 2009, 23 (4) : 1169-1190. doi: 10.3934/dcds.2009.23.1169

[16]

Qiong Chen, Chunlai Mu, Zhaoyin Xiang. Blow-up and asymptotic behavior of solutions to a semilinear integrodifferential system. Communications on Pure & Applied Analysis, 2006, 5 (3) : 435-446. doi: 10.3934/cpaa.2006.5.435

[17]

Christian Klein, Benson Muite, Kristelle Roidot. Numerical study of blow-up in the Davey-Stewartson system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1361-1387. doi: 10.3934/dcdsb.2013.18.1361

[18]

Huiling Li, Mingxin Wang. Properties of blow-up solutions to a parabolic system with nonlinear localized terms. Discrete & Continuous Dynamical Systems, 2005, 13 (3) : 683-700. doi: 10.3934/dcds.2005.13.683

[19]

Hongwei Chen. Blow-up estimates of positive solutions of a reaction-diffusion system. Conference Publications, 2003, 2003 (Special) : 182-188. doi: 10.3934/proc.2003.2003.182

[20]

Mari Paz Calvo, Jesus M. Sanz-Serna. Carrying an inverted pendulum on a bumpy road. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 429-438. doi: 10.3934/dcdsb.2010.14.429

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (135)
  • HTML views (259)
  • Cited by (0)

Other articles
by authors

[Back to Top]