doi: 10.3934/dcdsb.2021196
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Existence and continuity of global attractors for ternary mixtures of solids

1. 

Faculty of Mathematics, Federal University of Pará, Raimundo Santana Street, S/N, 68721-000, Salinópolis, PA, Brazil

2. 

Department of Economic Mathematics, Southwestern University of Finance and Economics, Chengdu, 611130, China

3. 

Institute of Exact and Natural Sciences, Federal University of Pará, Augusto corrêa Street, Number 01, 66075-110, Belém PA, Brazil

* Corresponding author: Mirelson M. Freitas

Received  December 2020 Revised  June 2021 Early access August 2021

In this paper, we study the long-time dynamics of a system modelinga mixture of three interacting continua with nonlinear damping, sources terms and subjected to small perturbations of autonomousexternal forces with a parameter $ \epsilon $, inspired by the modelstudied by Dell' Oro and Rivera [12]. We establish astabilizability estimate for the associated gradient dynamicalsystem, which as a consequence, implies the existence of a compactglobal attractor with finite fractal dimension andexponential attractors. This estimate is establishedindependent of the parameter $ \epsilon\in[0,1] $. We also prove thesmoothness of global attractors independent of the parameter$ \epsilon\in[0,1] $. Moreover, we show that the family of globalattractors is continuous with respect to the parameter $ \epsilon $ ona residual dense set $ I_*\subset[0,1] $ in the same sense proposed inHoang et al. [15].

Citation: Mirelson M. Freitas, Anderson J. A. Ramos, Baowei Feng, Mauro L. Santos, Helen C. M. Rodrigues. Existence and continuity of global attractors for ternary mixtures of solids. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021196
References:
[1]

M. S. AlvesJ. E. Muñoz Rivera and R. Quintanilla, Exponential decay in a thermoelastic mixture of solids, Internat J. Solids Struct., 46 (2009), 1659-1666.  doi: 10.1016/j.ijsolstr.2008.12.005.  Google Scholar

[2]

M. S. AlvesJ. E. Muñoz RiveraM. Sepúlveda and O. V. Villagrán, Exponential stability in thermoviscoelastic mixtures of solids, Internat. J. Solids Struct., 46 (2009), 4151-4162.  doi: 10.1016/j.ijsolstr.2009.07.026.  Google Scholar

[3]

R. J. Atkin and R. E. Craine, Continuum theories of mixtures: Basic theory and historical development, Quat. J. Mech. Appl. Math., 29 (1976), 209-244.  doi: 10.1093/qjmam/29.2.209.  Google Scholar

[4]

A. V. Babin and S. Y. Pilyugin, Continuous dependence of attractors on the shape of domain, J. Math. Sci., 87 (1997), 3304-3310.  doi: 10.1007/BF02355582.  Google Scholar

[5]

V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer Monographs in Mathematics, Springer, New York, 2010. doi: 10.1007/978-1-4419-5542-5.  Google Scholar

[6]

A. Bedford and D. S. Drumheller, Theory of immiscible and structured mixtures, Int. J. Eng. Sci., 21 (1983), 863-960.  doi: 10.1016/0020-7225(83)90071-X.  Google Scholar

[7]

R. M. Bowen, Continuum Physics III: Theory of Mixtures, A.C. Eringen, ed., Academic Press, New York, (1976), 689–722. Google Scholar

[8]

R. M. Bowen and J. C. Wiese, Diffusion in mixtures of elastic materials, Int. J. Eng. Sci., 7 (1969), 689-722.  doi: 10.1016/0020-7225(69)90048-2.  Google Scholar

[9]

I. ChueshovM. Eller and and I. Lasiecka, On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation, Comm. Partial Differential Equations, 27 (2002), 1901-1951.  doi: 10.1081/PDE-120016132.  Google Scholar

[10]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear, damping, Mem. Amer. Math. Soc., 195 (2008). doi: 10.1090/memo/0912.  Google Scholar

[11]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations. Well-posedness and Long Time Dynamics, Springer Monographs in Mathematics, Springer, New York, 2010. doi: 10.1007/978-0-387-87712-9.  Google Scholar

[12]

F. Dell' Oro and J. E. Muñoz Rivera, Stabilization of ternary mixtures with frictional dissipation, Asymptotic Analysis, 89 (2014), 235-262.  doi: 10.3233/ASY-141229.  Google Scholar

[13]

P. G. Geredeli and I. Lasiecka, Asymptotic analysis and upper semicontinuity with respect to rotational inertia of attractors to von karman plates with geometrically localized dissipation and critical nonlinearity, Nonlinear Anal., 91 (2013), 72-92.  doi: 10.1016/j.na.2013.06.008.  Google Scholar

[14]

J. K. Hale and G. Raugel, Upper semicontinuity of the attractor for a singulary perturbed hyperbolic equation, J. Differential Equations, 73 (1988), 197-214.  doi: 10.1016/0022-0396(88)90104-0.  Google Scholar

[15]

L. T. HoangE. J. Olson and and J. C. Robinson, On the continuity of global attractors, Proc. Amer. Math. Soc., 143 (2015), 4389-4395.  doi: 10.1090/proc/12598.  Google Scholar

[16]

D. Iesan and R. Quintanilla, Existence and continuous dependence results in the theory of interacting continua, J. Elasticity, 36 (1994), 85-98.  doi: 10.1007/BF00042493.  Google Scholar

[17]

T. F. Ma and R. N. Monteiro, Singular limit and long-time dynamics of Bresse systems, SIAM Journal on Mathematical Analysis, 49 (2017), 2468-2495.  doi: 10.1137/15M1039894.  Google Scholar

[18]

F. Martinez and R. Quintanilla, Some qualitative results for the linear theory of binary mixtures of thermoelastic solids, Collect. Math., 46 (1995), 236-277.   Google Scholar

[19]

J. Simon, Compact sets in the space ${L^p(0, T, B)}$, Annali di Matematica Pura ed Applicata, 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

show all references

References:
[1]

M. S. AlvesJ. E. Muñoz Rivera and R. Quintanilla, Exponential decay in a thermoelastic mixture of solids, Internat J. Solids Struct., 46 (2009), 1659-1666.  doi: 10.1016/j.ijsolstr.2008.12.005.  Google Scholar

[2]

M. S. AlvesJ. E. Muñoz RiveraM. Sepúlveda and O. V. Villagrán, Exponential stability in thermoviscoelastic mixtures of solids, Internat. J. Solids Struct., 46 (2009), 4151-4162.  doi: 10.1016/j.ijsolstr.2009.07.026.  Google Scholar

[3]

R. J. Atkin and R. E. Craine, Continuum theories of mixtures: Basic theory and historical development, Quat. J. Mech. Appl. Math., 29 (1976), 209-244.  doi: 10.1093/qjmam/29.2.209.  Google Scholar

[4]

A. V. Babin and S. Y. Pilyugin, Continuous dependence of attractors on the shape of domain, J. Math. Sci., 87 (1997), 3304-3310.  doi: 10.1007/BF02355582.  Google Scholar

[5]

V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer Monographs in Mathematics, Springer, New York, 2010. doi: 10.1007/978-1-4419-5542-5.  Google Scholar

[6]

A. Bedford and D. S. Drumheller, Theory of immiscible and structured mixtures, Int. J. Eng. Sci., 21 (1983), 863-960.  doi: 10.1016/0020-7225(83)90071-X.  Google Scholar

[7]

R. M. Bowen, Continuum Physics III: Theory of Mixtures, A.C. Eringen, ed., Academic Press, New York, (1976), 689–722. Google Scholar

[8]

R. M. Bowen and J. C. Wiese, Diffusion in mixtures of elastic materials, Int. J. Eng. Sci., 7 (1969), 689-722.  doi: 10.1016/0020-7225(69)90048-2.  Google Scholar

[9]

I. ChueshovM. Eller and and I. Lasiecka, On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation, Comm. Partial Differential Equations, 27 (2002), 1901-1951.  doi: 10.1081/PDE-120016132.  Google Scholar

[10]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear, damping, Mem. Amer. Math. Soc., 195 (2008). doi: 10.1090/memo/0912.  Google Scholar

[11]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations. Well-posedness and Long Time Dynamics, Springer Monographs in Mathematics, Springer, New York, 2010. doi: 10.1007/978-0-387-87712-9.  Google Scholar

[12]

F. Dell' Oro and J. E. Muñoz Rivera, Stabilization of ternary mixtures with frictional dissipation, Asymptotic Analysis, 89 (2014), 235-262.  doi: 10.3233/ASY-141229.  Google Scholar

[13]

P. G. Geredeli and I. Lasiecka, Asymptotic analysis and upper semicontinuity with respect to rotational inertia of attractors to von karman plates with geometrically localized dissipation and critical nonlinearity, Nonlinear Anal., 91 (2013), 72-92.  doi: 10.1016/j.na.2013.06.008.  Google Scholar

[14]

J. K. Hale and G. Raugel, Upper semicontinuity of the attractor for a singulary perturbed hyperbolic equation, J. Differential Equations, 73 (1988), 197-214.  doi: 10.1016/0022-0396(88)90104-0.  Google Scholar

[15]

L. T. HoangE. J. Olson and and J. C. Robinson, On the continuity of global attractors, Proc. Amer. Math. Soc., 143 (2015), 4389-4395.  doi: 10.1090/proc/12598.  Google Scholar

[16]

D. Iesan and R. Quintanilla, Existence and continuous dependence results in the theory of interacting continua, J. Elasticity, 36 (1994), 85-98.  doi: 10.1007/BF00042493.  Google Scholar

[17]

T. F. Ma and R. N. Monteiro, Singular limit and long-time dynamics of Bresse systems, SIAM Journal on Mathematical Analysis, 49 (2017), 2468-2495.  doi: 10.1137/15M1039894.  Google Scholar

[18]

F. Martinez and R. Quintanilla, Some qualitative results for the linear theory of binary mixtures of thermoelastic solids, Collect. Math., 46 (1995), 236-277.   Google Scholar

[19]

J. Simon, Compact sets in the space ${L^p(0, T, B)}$, Annali di Matematica Pura ed Applicata, 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[1]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[2]

M. Bulíček, Josef Málek, Dalibor Pražák. On the dimension of the attractor for a class of fluids with pressure dependent viscosities. Communications on Pure & Applied Analysis, 2005, 4 (4) : 805-822. doi: 10.3934/cpaa.2005.4.805

[3]

Delin Wu and Chengkui Zhong. Estimates on the dimension of an attractor for a nonclassical hyperbolic equation. Electronic Research Announcements, 2006, 12: 63-70.

[4]

Dalibor Pražák. On the dimension of the attractor for the wave equation with nonlinear damping. Communications on Pure & Applied Analysis, 2005, 4 (1) : 165-174. doi: 10.3934/cpaa.2005.4.165

[5]

Dalibor Pražák. Exponential attractor for the delayed logistic equation with a nonlinear diffusion. Conference Publications, 2003, 2003 (Special) : 717-726. doi: 10.3934/proc.2003.2003.717

[6]

Messoud Efendiev, Anna Zhigun. On an exponential attractor for a class of PDEs with degenerate diffusion and chemotaxis. Discrete & Continuous Dynamical Systems, 2018, 38 (2) : 651-673. doi: 10.3934/dcds.2018028

[7]

Nikos I. Karachalios, Nikos M. Stavrakakis. Estimates on the dimension of a global attractor for a semilinear dissipative wave equation on $\mathbb R^N$. Discrete & Continuous Dynamical Systems, 2002, 8 (4) : 939-951. doi: 10.3934/dcds.2002.8.939

[8]

Messoud Efendiev, Etsushi Nakaguchi, Wolfgang L. Wendland. Uniform estimate of dimension of the global attractor for a semi-discretized chemotaxis-growth system. Conference Publications, 2007, 2007 (Special) : 334-343. doi: 10.3934/proc.2007.2007.334

[9]

Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (12) : 6387-6403. doi: 10.3934/dcdsb.2021024

[10]

Shulin Wang, Yangrong Li. Probabilistic continuity of a pullback random attractor in time-sample. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2699-2722. doi: 10.3934/dcdsb.2020028

[11]

Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete & Continuous Dynamical Systems, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215

[12]

I. D. Chueshov, Iryna Ryzhkova. A global attractor for a fluid--plate interaction model. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1635-1656. doi: 10.3934/cpaa.2013.12.1635

[13]

Yirong Jiang, Nanjing Huang, Zhouchao Wei. Existence of a global attractor for fractional differential hemivariational inequalities. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1193-1212. doi: 10.3934/dcdsb.2019216

[14]

Hiroshi Matano, Ken-Ichi Nakamura. The global attractor of semilinear parabolic equations on $S^1$. Discrete & Continuous Dynamical Systems, 1997, 3 (1) : 1-24. doi: 10.3934/dcds.1997.3.1

[15]

Yuncheng You. Global attractor of the Gray-Scott equations. Communications on Pure & Applied Analysis, 2008, 7 (4) : 947-970. doi: 10.3934/cpaa.2008.7.947

[16]

Alexey Cheskidov, Susan Friedlander, Nataša Pavlović. An inviscid dyadic model of turbulence: The global attractor. Discrete & Continuous Dynamical Systems, 2010, 26 (3) : 781-794. doi: 10.3934/dcds.2010.26.781

[17]

Rana D. Parshad, Juan B. Gutierrez. On the global attractor of the Trojan Y Chromosome model. Communications on Pure & Applied Analysis, 2011, 10 (1) : 339-359. doi: 10.3934/cpaa.2011.10.339

[18]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (10) : 5321-5335. doi: 10.3934/dcdsb.2020345

[19]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021, 26 (12) : 6207-6228. doi: 10.3934/dcdsb.2021015

[20]

Marco Cabral, Ricardo Rosa, Roger Temam. Existence and dimension of the attractor for the Bénard problem on channel-like domains. Discrete & Continuous Dynamical Systems, 2004, 10 (1&2) : 89-116. doi: 10.3934/dcds.2004.10.89

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (145)
  • HTML views (165)
  • Cited by (0)

[Back to Top]