doi: 10.3934/dcdsb.2021206
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Predator-prey interactions under fear effect and multiple foraging strategies

1. 

Department of Mathematics, University of Kalyani, Nadia, West Bengal-741235, India

2. 

Department of Mathematics, Karimpur Pannadevi College, Nadia, West Bengal-741152, India

* Corresponding author: Joydeb Bhattacharyya

Received  February 2021 Revised  May 2021 Early access August 2021

Fund Project: SH is supported by CSIR, Govt. of India grant (09/106(0161)/2017-EMR-I). JB is supported by SERB, Govt. of India grant (TAR/2018/000283). SP is supported by WBSCST, Govt. of India grant (ST/P/S & T/16G-22/2018)

We propose and analyze the effects of a generalist predator-driven fear effect on a prey population by considering a modified Leslie-Gower predator-prey model. We assume that the prey population suffers from reduced fecundity due to the fear of predators. We investigate the predator-prey dynamics by incorporating linear, Holling type Ⅱ and Holling type Ⅲ foraging strategies of the generalist predator. As a control strategy, we have considered density-dependent harvesting of the organisms in the system. We show that the systems with linear and Holling type Ⅲ foraging exhibit transcritical bifurcation, whereas the system with Holling type Ⅱ foraging has a much more complex dynamics with transcritical, saddle-node, and Hopf bifurcations. It is observed that the prey population in the system with Holling type Ⅲ foraging of the predator gets severely affected by the predation-driven fear effect in comparison with the same with linear and Holling type Ⅱ foraging rates of the predator. Our model simulation results show that an increase in the harvesting rate of the predator is a viable strategy in recovering the prey population.

Citation: Susmita Halder, Joydeb Bhattacharyya, Samares Pal. Predator-prey interactions under fear effect and multiple foraging strategies. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021206
References:
[1]

M. A. Aziz-Alaoui and M. Daher Okiye, Boundedness and global stability for a predator-prey model with modified leslie-gower and holling-type ii schemes, Appl. Math. Lett., 16 (2003), 1069-1075.  doi: 10.1016/S0893-9659(03)90096-6.  Google Scholar

[2]

G. Barabás and G. Meszéna, When the exception becomes the rule: the disappearance of limiting similarity in the Lotka–Volterra model, J. Theoret. Biol., 258 (2009), 89-94.  doi: 10.1016/j.jtbi.2008.12.033.  Google Scholar

[3]

S. Creel and D. Christianson, Relationships between direct predation and risk effects, Trends in Ecology & Evolution, 23 (2008), 194-201.  doi: 10.1016/j.tree.2007.12.004.  Google Scholar

[4]

W. Cresswell, Predation in bird populations, Journal of Ornithology, 152 (2011), 251-263.  doi: 10.1007/s10336-010-0638-1.  Google Scholar

[5]

Y.-J. Gong and J.-C. Huang, Bogdanov-Takens bifurcation in a Leslie-Gower predator-prey model with prey harvesting, Acta Math. Appl. Sin. Engl. Ser., 30 (2014), 239-244.  doi: 10.1007/s10255-014-0279-x.  Google Scholar

[6]

E. González-OlivaresJ. Mena-LorcaA. Rojas-Palma and J. D. Flores, Dynamical complexities in the Leslie–Gower predator–prey model as consequences of the Allee effect on prey, Appl. Math. Model., 35 (2011), 366-381.  doi: 10.1016/j.apm.2010.07.001.  Google Scholar

[7]

R. P. GuptaM. Banerjee and P. Chandra, Bifurcation analysis and control of Leslie–Gower predator–prey model with Michaelis–Menten type prey-harvesting, Differ. Equ. Dyn. Syst., 20 (2012), 339-366.  doi: 10.1007/s12591-012-0142-6.  Google Scholar

[8]

R. P. Gupta and P. Chandra, Bifurcation analysis of modified Leslie–Gower predator–prey model with Michaelis–Menten type prey harvesting, J. Math. Anal. Appl., 398 (2013), 278-295.  doi: 10.1016/j.jmaa.2012.08.057.  Google Scholar

[9]

S. HalderJ. Bhattacharyya and S. Pal, Comparative studies on a predator–prey model subjected to fear and Allee effect with type Ⅰ and type Ⅱ foraging, J. Appl. Math. Comput., 62 (2020), 93-118.  doi: 10.1007/s12190-019-01275-w.  Google Scholar

[10]

G. W. Harrison, Global stability of predator-prey interactions, J. Math. Biol., 8 (1979), 159-171.  doi: 10.1007/BF00279719.  Google Scholar

[11]

C. S. Holling, The components of predation as revealed by a study of small-mammal predation of the European pine sawfly1, The Canadian Entomologist, 91 (1959), 293-320.   Google Scholar

[12]

C. S. Holling, Some characteristics of simple types of predation and parasitism, Canadian Entomologist, 91 (1959), 385-398.  doi: 10.4039/Ent91385-7.  Google Scholar

[13]

V. Křivan, On the Gause predator–prey model with a refuge: A fresh look at the history, J. Theoret. Biol., 274 (2011), 67-73.  doi: 10.1016/j.jtbi.2011.01.016.  Google Scholar

[14]

P. H. Leslie and J. C. Gower, The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika, 47 (1960), 219-234.  doi: 10.1093/biomet/47.3-4.219.  Google Scholar

[15]

M. Liu and K. Wang, Dynamics of a Leslie–Gower Holling-type ii predator–prey system with Lévy jumps, Nonlinear Anal., 85 (2013), 204-213.  doi: 10.1016/j.na.2013.02.018.  Google Scholar

[16]

K. J. MacLeodC. J. KrebsR. Boonstra and M. J. Sheriff, Fear and lethality in snowshoe hares: The deadly effects of non-consumptive predation risk, Oikos, 127 (2018), 375-380.  doi: 10.1111/oik.04890.  Google Scholar

[17]

P. MishraS. N. Raw and B. Tiwari, Study of a Leslie–Gower predator-prey model with prey defense and mutual interference of predators, Chaos Solitons Fractals, 120 (2019), 1-16.  doi: 10.1016/j.chaos.2019.01.012.  Google Scholar

[18]

A. Oaten and W. W. Murdoch, Functional response and stability in predator-prey systems, The American Naturalist, 109 (1975), 289-298.   Google Scholar

[19]

L. Perko, Differential Equations and Dynamical Systems, vol. 7, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4684-0392-3.  Google Scholar

[20]

E. L. Preisser and D. I. Bolnick, The many faces of fear: Comparing the pathways and impacts of nonconsumptive predator effects on prey populations, PloS One, 3 (2008), e2465. doi: 10.1371/journal.pone.0002465.  Google Scholar

[21]

H. Seno, A discrete prey–predator model preserving the dynamics of a structurally unstable Lotka–Volterra model, J. Difference Equ. Appl., 13 (2007), 1155-1170.  doi: 10.1080/10236190701464996.  Google Scholar

[22]

M. K. SinghB. S. Bhadauria and B. K. Singh, Bifurcation analysis of modified leslie-gower predator-prey model with double allee effect, Ain Shams Engineering Journal, 9 (2018), 1263-1277.  doi: 10.1016/j.asej.2016.07.007.  Google Scholar

[23]

E. van LeeuwenV. A. A. Jansen and P. W. Bright, How population dynamics shape the functional response in a one-predator–two-prey system, Ecology, 88 (2007), 1571-1581.  doi: 10.1890/06-1335.  Google Scholar

[24]

J. Wang, Y. Cai, S. Fu and W. Wang, The effect of the fear factor on the dynamics of a predator-prey model incorporating the prey refuge, Chaos, 29 (2019), 083109, 10 pp. doi: 10.1063/1.5111121.  Google Scholar

[25]

X. WangL. Zanette and X. Zou, Modelling the fear effect in predator–prey interactions, J. Math. Biol., 73 (2016), 1179-1204.  doi: 10.1007/s00285-016-0989-1.  Google Scholar

[26]

X. Wang and X. Zou, Modeling the fear effect in predator–prey interactions with adaptive avoidance of predators, Bull. Math. Biol., 79 (2017), 1325-1359.  doi: 10.1007/s11538-017-0287-0.  Google Scholar

[27]

Y. Xia and S. Yuan, Survival analysis of a stochastic predator–prey model with prey refuge and fear effect, J. Biol. Dyn., 14 (2020), 871-892.  doi: 10.1080/17513758.2020.1853832.  Google Scholar

[28]

Z. Xiao, Z. Li et al., Stability analysis of a mutual interference predator-prey model with the fear effect, Journal of Applied Science and Engineering, 22 (2019), 205–211. Google Scholar

[29]

Z. Zhang, R. K. Upadhyay and J. Datta, Bifurcation analysis of a modified Leslie–Gower model with Holling type-Ⅳ functional response and nonlinear prey harvesting, Adv. Difference Equ., 2018 (2018), Paper No. 127, 21 pp. doi: 10.1186/s13662-018-1581-3.  Google Scholar

[30]

Z.-Z. Zhang and H.-Z. Yang, Hopf bifurcation in a delayed predator-prey system with modified Leslie-Gower and Holling type Ⅲ schemes, Acta Automat. Sinica, 39 (2013), 610-616.  doi: 10.3724/SP.J.1004.2013.00610.  Google Scholar

[31]

Y. Zhu and K. Wang, Existence and global attractivity of positive periodic solutions for a predator–prey model with modified Leslie–Gower Holling-type Ⅱ schemes, J. Math. Anal. Appl., 384 (2011), 400-408.  doi: 10.1016/j.jmaa.2011.05.081.  Google Scholar

show all references

References:
[1]

M. A. Aziz-Alaoui and M. Daher Okiye, Boundedness and global stability for a predator-prey model with modified leslie-gower and holling-type ii schemes, Appl. Math. Lett., 16 (2003), 1069-1075.  doi: 10.1016/S0893-9659(03)90096-6.  Google Scholar

[2]

G. Barabás and G. Meszéna, When the exception becomes the rule: the disappearance of limiting similarity in the Lotka–Volterra model, J. Theoret. Biol., 258 (2009), 89-94.  doi: 10.1016/j.jtbi.2008.12.033.  Google Scholar

[3]

S. Creel and D. Christianson, Relationships between direct predation and risk effects, Trends in Ecology & Evolution, 23 (2008), 194-201.  doi: 10.1016/j.tree.2007.12.004.  Google Scholar

[4]

W. Cresswell, Predation in bird populations, Journal of Ornithology, 152 (2011), 251-263.  doi: 10.1007/s10336-010-0638-1.  Google Scholar

[5]

Y.-J. Gong and J.-C. Huang, Bogdanov-Takens bifurcation in a Leslie-Gower predator-prey model with prey harvesting, Acta Math. Appl. Sin. Engl. Ser., 30 (2014), 239-244.  doi: 10.1007/s10255-014-0279-x.  Google Scholar

[6]

E. González-OlivaresJ. Mena-LorcaA. Rojas-Palma and J. D. Flores, Dynamical complexities in the Leslie–Gower predator–prey model as consequences of the Allee effect on prey, Appl. Math. Model., 35 (2011), 366-381.  doi: 10.1016/j.apm.2010.07.001.  Google Scholar

[7]

R. P. GuptaM. Banerjee and P. Chandra, Bifurcation analysis and control of Leslie–Gower predator–prey model with Michaelis–Menten type prey-harvesting, Differ. Equ. Dyn. Syst., 20 (2012), 339-366.  doi: 10.1007/s12591-012-0142-6.  Google Scholar

[8]

R. P. Gupta and P. Chandra, Bifurcation analysis of modified Leslie–Gower predator–prey model with Michaelis–Menten type prey harvesting, J. Math. Anal. Appl., 398 (2013), 278-295.  doi: 10.1016/j.jmaa.2012.08.057.  Google Scholar

[9]

S. HalderJ. Bhattacharyya and S. Pal, Comparative studies on a predator–prey model subjected to fear and Allee effect with type Ⅰ and type Ⅱ foraging, J. Appl. Math. Comput., 62 (2020), 93-118.  doi: 10.1007/s12190-019-01275-w.  Google Scholar

[10]

G. W. Harrison, Global stability of predator-prey interactions, J. Math. Biol., 8 (1979), 159-171.  doi: 10.1007/BF00279719.  Google Scholar

[11]

C. S. Holling, The components of predation as revealed by a study of small-mammal predation of the European pine sawfly1, The Canadian Entomologist, 91 (1959), 293-320.   Google Scholar

[12]

C. S. Holling, Some characteristics of simple types of predation and parasitism, Canadian Entomologist, 91 (1959), 385-398.  doi: 10.4039/Ent91385-7.  Google Scholar

[13]

V. Křivan, On the Gause predator–prey model with a refuge: A fresh look at the history, J. Theoret. Biol., 274 (2011), 67-73.  doi: 10.1016/j.jtbi.2011.01.016.  Google Scholar

[14]

P. H. Leslie and J. C. Gower, The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika, 47 (1960), 219-234.  doi: 10.1093/biomet/47.3-4.219.  Google Scholar

[15]

M. Liu and K. Wang, Dynamics of a Leslie–Gower Holling-type ii predator–prey system with Lévy jumps, Nonlinear Anal., 85 (2013), 204-213.  doi: 10.1016/j.na.2013.02.018.  Google Scholar

[16]

K. J. MacLeodC. J. KrebsR. Boonstra and M. J. Sheriff, Fear and lethality in snowshoe hares: The deadly effects of non-consumptive predation risk, Oikos, 127 (2018), 375-380.  doi: 10.1111/oik.04890.  Google Scholar

[17]

P. MishraS. N. Raw and B. Tiwari, Study of a Leslie–Gower predator-prey model with prey defense and mutual interference of predators, Chaos Solitons Fractals, 120 (2019), 1-16.  doi: 10.1016/j.chaos.2019.01.012.  Google Scholar

[18]

A. Oaten and W. W. Murdoch, Functional response and stability in predator-prey systems, The American Naturalist, 109 (1975), 289-298.   Google Scholar

[19]

L. Perko, Differential Equations and Dynamical Systems, vol. 7, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4684-0392-3.  Google Scholar

[20]

E. L. Preisser and D. I. Bolnick, The many faces of fear: Comparing the pathways and impacts of nonconsumptive predator effects on prey populations, PloS One, 3 (2008), e2465. doi: 10.1371/journal.pone.0002465.  Google Scholar

[21]

H. Seno, A discrete prey–predator model preserving the dynamics of a structurally unstable Lotka–Volterra model, J. Difference Equ. Appl., 13 (2007), 1155-1170.  doi: 10.1080/10236190701464996.  Google Scholar

[22]

M. K. SinghB. S. Bhadauria and B. K. Singh, Bifurcation analysis of modified leslie-gower predator-prey model with double allee effect, Ain Shams Engineering Journal, 9 (2018), 1263-1277.  doi: 10.1016/j.asej.2016.07.007.  Google Scholar

[23]

E. van LeeuwenV. A. A. Jansen and P. W. Bright, How population dynamics shape the functional response in a one-predator–two-prey system, Ecology, 88 (2007), 1571-1581.  doi: 10.1890/06-1335.  Google Scholar

[24]

J. Wang, Y. Cai, S. Fu and W. Wang, The effect of the fear factor on the dynamics of a predator-prey model incorporating the prey refuge, Chaos, 29 (2019), 083109, 10 pp. doi: 10.1063/1.5111121.  Google Scholar

[25]

X. WangL. Zanette and X. Zou, Modelling the fear effect in predator–prey interactions, J. Math. Biol., 73 (2016), 1179-1204.  doi: 10.1007/s00285-016-0989-1.  Google Scholar

[26]

X. Wang and X. Zou, Modeling the fear effect in predator–prey interactions with adaptive avoidance of predators, Bull. Math. Biol., 79 (2017), 1325-1359.  doi: 10.1007/s11538-017-0287-0.  Google Scholar

[27]

Y. Xia and S. Yuan, Survival analysis of a stochastic predator–prey model with prey refuge and fear effect, J. Biol. Dyn., 14 (2020), 871-892.  doi: 10.1080/17513758.2020.1853832.  Google Scholar

[28]

Z. Xiao, Z. Li et al., Stability analysis of a mutual interference predator-prey model with the fear effect, Journal of Applied Science and Engineering, 22 (2019), 205–211. Google Scholar

[29]

Z. Zhang, R. K. Upadhyay and J. Datta, Bifurcation analysis of a modified Leslie–Gower model with Holling type-Ⅳ functional response and nonlinear prey harvesting, Adv. Difference Equ., 2018 (2018), Paper No. 127, 21 pp. doi: 10.1186/s13662-018-1581-3.  Google Scholar

[30]

Z.-Z. Zhang and H.-Z. Yang, Hopf bifurcation in a delayed predator-prey system with modified Leslie-Gower and Holling type Ⅲ schemes, Acta Automat. Sinica, 39 (2013), 610-616.  doi: 10.3724/SP.J.1004.2013.00610.  Google Scholar

[31]

Y. Zhu and K. Wang, Existence and global attractivity of positive periodic solutions for a predator–prey model with modified Leslie–Gower Holling-type Ⅱ schemes, J. Math. Anal. Appl., 384 (2011), 400-408.  doi: 10.1016/j.jmaa.2011.05.081.  Google Scholar

Table 2. The system is LAS at $ (a) $ $ E^* $ ($ E_0 $, $ E_1 $ and $ E_2 $ are unstable), $ (b) $ $ E_2 $ ($ E_0 $ and $ E_1 $ are unstable; $ E^* $ does not exist), $ (c) $ $ E_1 $ ($ E_0 $ is unstable; $ E^* $ and $ E_2 $ do not exist) and $ (d) $ $ E_0 $ ($ E^* $, $ E_1 $ and $ E_2 $ do not exist)">Figure 1.  Mutual position of prey-nullclines (red) and predator-nullclines (blue) of the system (3) due to the changes in $ h_1 $ and $ h_2 $, other parameters are taken from Table 2. The system is LAS at $ (a) $ $ E^* $ ($ E_0 $, $ E_1 $ and $ E_2 $ are unstable), $ (b) $ $ E_2 $ ($ E_0 $ and $ E_1 $ are unstable; $ E^* $ does not exist), $ (c) $ $ E_1 $ ($ E_0 $ is unstable; $ E^* $ and $ E_2 $ do not exist) and $ (d) $ $ E_0 $ ($ E^* $, $ E_1 $ and $ E_2 $ do not exist)
Figure 2.  One-parameter bifurcation plots of the system $ (4) $ due to the changes in $ (a) $ $ h_1 $ where $ h_2<r $, $ (b) $ $ h_1 $ where $ h_2>r $, $ (c) $ $ h_2 $ where $ h_1<h_1^* $, and $ (d) $ $ h_2 $ where $ h_1>h_1^* $
Table 2. The coloured bars represent the prey population density">Figure 3.  Two-parameter bifurcation plots with the bifurcation parameters $ (a) $ $ h_1 $ and $ h_2 $, $ (b) $ $ h_1 $ and $ \beta $, $ (c) $ $ h_2 $ and $ \beta $, $ (d) $ $ \beta $ and $ \eta_1 $, $ (e) $ $ h_1 $ and $ \eta_1 $, $ (f) $ $ h_2 $ and $ \eta_1 $. All other parameters are taken from Table 2. The coloured bars represent the prey population density
Table 2. $ (a) $ The system is LAS at the unique interior equilibrium $ E^*_1 $ ($ E_0 $, $ E_1 $ and $ E_2 $ are unstable). $ (b) $ The system has bistability at $ E_2 $ and $ E^*_1 $ ($ E_0 $, $ E_1 $ and $ E^*_2 $ are unstable). The system is LAS at $ (c) $ $ E_2 $ ($ E_0 $ and $ E_1 $ are unstable; $ E^*_i $ does not exist), $ (d) $ $ E_2 $ ($ E_0 $ is unstable; $ E^*_i $ and $ E_1 $ do not exist), $ (e) $ $ E_1 $ ($ E_0 $ is unstable; $ E^*_i $ and $ E_2 $ do not exist) and $ (f) $ $ E_0 $ ($ E^*_i $, $ E_1 $ and $ E_2 $ do not exist) $ (i = 1,2) $">Figure 4.  Mutual position of prey-nullclines (red) and predator-nullclines (blue) of the system (4) due to the changes in $ h_1 $ and $ h_2 $, all other parameters are taken from Table 2. $ (a) $ The system is LAS at the unique interior equilibrium $ E^*_1 $ ($ E_0 $, $ E_1 $ and $ E_2 $ are unstable). $ (b) $ The system has bistability at $ E_2 $ and $ E^*_1 $ ($ E_0 $, $ E_1 $ and $ E^*_2 $ are unstable). The system is LAS at $ (c) $ $ E_2 $ ($ E_0 $ and $ E_1 $ are unstable; $ E^*_i $ does not exist), $ (d) $ $ E_2 $ ($ E_0 $ is unstable; $ E^*_i $ and $ E_1 $ do not exist), $ (e) $ $ E_1 $ ($ E_0 $ is unstable; $ E^*_i $ and $ E_2 $ do not exist) and $ (f) $ $ E_0 $ ($ E^*_i $, $ E_1 $ and $ E_2 $ do not exist) $ (i = 1,2) $
Figure 5.  One-parameter bifurcation plots of the system (4) due to the changes in $ h_1 $ $ (a) $ for $ h_2<r $ and $ \eta_1 = 0.05 $, where a transcritical bifurcation occurs at $ h_1^{**} = 0.6585 $; $ (b) $ for $ h_2<r $ and $ \eta_1 = 0.125 $, a transcritical and a saddle-node bifurcation occur at $ h_1^{**} = 0.1475 $ and $ h_{1cr}^- = 0.3685 $ respectively. One-parameter bifurcation plots of the system (4) due to the changes in $ h_2 $ $ (c) $ for $ h_1<h_1^* $ and $ \eta_1 = 0.05 $, where a transcritical bifurcation occurs at $ h_2^{**} = 0.3495 $; $ (d) $ for $ h_1<h_1^* $ and $ \eta_1 = 0.125 $, a transcritical and a saddle-node bifurcation occur at $ h_2^{**} = 0.74 $ and $ h_{2sn} = 0.64 $ respectively
Figure 6.  Two-parameter bifurcation plots with $ h_1 $ and $ h_2 $ as bifurcation parameters where $ (a) $ $ \eta_1 = 0.05 $ and $ (c) $ $ \eta_1 = 0.25 $, where $ f_{SN} = 0 $ is a saddle-node bifurcation curve, $ h_i = h_i^{**} $ $ (i = 1,2) $ and $ h_2 = r $ are transcritical bifurcation curves
Table 2">Figure 7.  Two-parameter bifurcation plots with the bifurcation parameters $ (a) $ $ h_1 $ and $ \beta $, $ (b) $ $ h_2 $ and $ \beta $, $ (c) $ $ h_1 $, and $ \eta_1 $, $ (d) $ $ h_2 $ and $ \eta_1 $; other parameter values are taken from Table 2
Figure 8.  $ (a) $ For $ \alpha = 0.4993 $, the phase space shows the existence of stable (in green) and unstable (in red) manifolds of the system (4). The unstable limit cycle around $ E^*_1 $ is represented in blue. The curves representing the changes in $ (b) $ $ {\rm{Tr}}(J^*_1) $, $ {\rm{Det}}(J^*_1) $ and $ (c) $ $ \frac{d}{d\alpha}{\rm{Tr}}(J^*_1) $ due to the changes in $ \alpha $ verify the occurrence of a Hopf bifurcation of the system (4) at $ \alpha = 0.4993 $
Figure 9.  Mutual position of prey-nullclines (red) and predator-nullclines (blue) of the system (5) due to the changes in $ h_1 $ and $ h_2 $, other parameters are taken from Table $ 1 $. The system is LAS at $ (a) $ $ E_* $ ($ E_0 $, $ E_1 $ and $ E_2 $ are unstable), $ (b) $ $ E_2 $ ($ E_0 $ and $ E_1 $ are unstable; $ E_* $ does not exist), $ (c) $ $ E_1 $ ($ E_0 $ is unstable; $ E_* $ and $ E_2 $ do not exist) and $ (d) $ $ E_0 $ ($ E_* $, $ E_1 $ and $ E_2 $ do not exist)
Table 2">Figure 10.  One-parameter bifurcation plots of the system (5) due to the changes in $ (a) $ $ h_1 $ where $ h_2<r $, $ (b) $ $ h_2 $ where $ h_1<h_1^{\#} $. $ (c) $ A two-parameter bifurcation plot with $ h_1 $ and $ h_2 $ as bifurcation parameters, where $ h_1 = 1 $, $ h_1 = h_1^{\#} $ and $ h_2 = r $ are transcritical bifurcation curves. All other parameters are taken from Table 2
Figure 11.  Two-parameter bifurcation plots of the system (5) with the bifurcation parameters $ (a) $ $ h_1 $ and $ \beta $, $ (b) $ $ h_2 $ and $ \beta $, $ (c) $ $ h_1 $ and $ \eta_1 $, $ (d) $ $ h_2 $ and $ \eta_1 $, where $ h_1 = h_1^{\#} $, $ h_2 = h_2^{\#} $, and $ h_2 = r $ are transcritical bifurcation curves
Figure 12.  Local sensitivity of the prey response for $ (a) $ linear, $ (b) $ Holling type Ⅱ, and $ (c) $ Holling type Ⅲ foraging of the predator. For comparison, model simulations before parameter manipulations, are shown in black line. The prey density from simulations where particular parameter values were increased by $ 10\% $ are shown in red lines, as are the prey density from simulations where particular parameter values were decreased by $ 10\% $ in blue lines
Figure 13.  One-parameter bifurcation plots due to the changes in $ \beta $, where $ h_1<1 $ and $ h_2<r $ for $ (a) $ linear, $ (b) $ Holling type Ⅱ, and $ (c) $ Holling type Ⅲ foraging rates
Figure 14.  One-parameter bifurcation plots due to the changes in $ \eta_1 $, where $ h_1<1 $ and $ h_2<r $ for $ (a) $ linear, $ (b) $ Holling type Ⅱ, and $ (c) $ Holling type Ⅲ foraging rates
Figure 15.  Local sensitivity of the predator response for $ (a) $ linear, $ (b) $ Holling type Ⅱ, and $ (c) $ Holling type Ⅲ foraging of the predator. For comparison, model simulations before parameter manipulations, are shown in black line. The predator density from simulations where particular parameter values were increased by $ 10\% $ are shown in red lines, as are the predator density from simulations where particular parameter values were decreased by $ 10\% $ in blue lines
Table 1.  Non-dimensionalized system
$ \delta $ $ \delta=1 $ (Linear) $ \delta=2 $ (Holling type-Ⅱ) $ \delta=3 $ (Holling type-Ⅲ)
Transformation $X=Kx$, $Y= \frac{R_{1}}{A_{1}}y$, $T= \frac{1}{R_{1}}t$,
$r=\frac{R_{2}}{R_{1}}$, $\beta=\frac{BR_{1}}{A_{1}}$, $h_{1}=\frac{H_{1}}{R_{1}}$,
$h_{2}=\frac{H_{2}}{R_{1}}$, $\alpha=\frac{A_{2}}{A_{1}K}$, $\eta_{1}=\frac{\eta}{K}$
$X=Kx$, $Y= \frac{R_{1}K}{A_{1}}y$, $T= \frac{1}{R_{1}}t$,
$r=\frac{R_{2}}{R_{1}}$, $\beta=\frac{BR_{1}K}{A_{1}}$, $h_{1}=\frac{H_{1}}{R_{1}}$, $h_{2}=\frac{H_{2}}{R_{1}}$,
$\alpha=\frac{A_{2}}{A_{1}}$, $\eta_{1}=\frac{\eta}{K}$, $b=\frac{B_{1}}{K}.$
$X=Kx$, $Y= \frac{R_{1}K}{A_{1}}y$, $T= \frac{1}{R_{1}}t$,
$r=\frac{R_{2}}{R_{1}}$, $\beta=\frac{BR_{1}K}{A_{1}}$, $h_{1}=\frac{H_{1}}{R_{1}}$, $h_{2}=\frac{H_{2}}{R_{1}}$,
$\alpha=\frac{A_{2}R_{1}}{A_{1}}$, $\eta_{1}=\frac{\eta}{K}$, $b_{1}=\frac{B_{1}}{K^2}.$
Non-dimensional system $ \begin{array}{ll}\frac{dx}{dt}=\frac{x(1-x)}{1+\beta y}- xyc_\delta(x)-h_{1}x\equiv f^\delta_1 \; \;\;\;\;\;\;\;\;\;(2)\end{array}$
$ \frac{dy}{dt}=y\left(r-\frac{\alpha y}{x+\eta_{1}}\right)-h_{2}y\equiv f^\delta_2,$
where $c_{\delta}(x)=\left\{\begin{array}{ll} 1, &{ \textrm{if }}\;\delta=1\\ \frac{1}{b+x}, &{ \textrm{if }}\;\delta=2\\ \frac{x}{b_1+x^2}, &{ \textrm{if }}\;\delta=3, \end{array}\right.$
$x(0)\geq 0$ and $y(0)\geq 0$.
$ \delta $ $ \delta=1 $ (Linear) $ \delta=2 $ (Holling type-Ⅱ) $ \delta=3 $ (Holling type-Ⅲ)
Transformation $X=Kx$, $Y= \frac{R_{1}}{A_{1}}y$, $T= \frac{1}{R_{1}}t$,
$r=\frac{R_{2}}{R_{1}}$, $\beta=\frac{BR_{1}}{A_{1}}$, $h_{1}=\frac{H_{1}}{R_{1}}$,
$h_{2}=\frac{H_{2}}{R_{1}}$, $\alpha=\frac{A_{2}}{A_{1}K}$, $\eta_{1}=\frac{\eta}{K}$
$X=Kx$, $Y= \frac{R_{1}K}{A_{1}}y$, $T= \frac{1}{R_{1}}t$,
$r=\frac{R_{2}}{R_{1}}$, $\beta=\frac{BR_{1}K}{A_{1}}$, $h_{1}=\frac{H_{1}}{R_{1}}$, $h_{2}=\frac{H_{2}}{R_{1}}$,
$\alpha=\frac{A_{2}}{A_{1}}$, $\eta_{1}=\frac{\eta}{K}$, $b=\frac{B_{1}}{K}.$
$X=Kx$, $Y= \frac{R_{1}K}{A_{1}}y$, $T= \frac{1}{R_{1}}t$,
$r=\frac{R_{2}}{R_{1}}$, $\beta=\frac{BR_{1}K}{A_{1}}$, $h_{1}=\frac{H_{1}}{R_{1}}$, $h_{2}=\frac{H_{2}}{R_{1}}$,
$\alpha=\frac{A_{2}R_{1}}{A_{1}}$, $\eta_{1}=\frac{\eta}{K}$, $b_{1}=\frac{B_{1}}{K^2}.$
Non-dimensional system $ \begin{array}{ll}\frac{dx}{dt}=\frac{x(1-x)}{1+\beta y}- xyc_\delta(x)-h_{1}x\equiv f^\delta_1 \; \;\;\;\;\;\;\;\;\;(2)\end{array}$
$ \frac{dy}{dt}=y\left(r-\frac{\alpha y}{x+\eta_{1}}\right)-h_{2}y\equiv f^\delta_2,$
where $c_{\delta}(x)=\left\{\begin{array}{ll} 1, &{ \textrm{if }}\;\delta=1\\ \frac{1}{b+x}, &{ \textrm{if }}\;\delta=2\\ \frac{x}{b_1+x^2}, &{ \textrm{if }}\;\delta=3, \end{array}\right.$
$x(0)\geq 0$ and $y(0)\geq 0$.
Table 2.  Tables of parameter values
(a)
Original parameters
Parameter Description Value
$R_1$ Intrinsic growth rate of prey 0.03
$R_2$ Intrinsic growth rate of predator 0.03
$B$ The level of fear 4
$A_1$ Consumption rate of predator 0.5
$A_2$ Intraspecific competition of predator 0.5
$K$ Carrying capacity of prey 2
$\eta$ Alternative prey density 0.25
$B_1$ Half saturation coefficient 0.1
$H_1$ Harvesting rate of prey 0.01
$H_2$ Harvesting rate of predator 0.02
(b)
Non-dimensional parameters
Parameter Value
$r$ 1
$\alpha$ 0.03
$\beta$ 0.48
$\eta_1$ 0.125
$b$ 0.025
$h_1$ 0.333
$h_2$ 0.667
(a)
Original parameters
Parameter Description Value
$R_1$ Intrinsic growth rate of prey 0.03
$R_2$ Intrinsic growth rate of predator 0.03
$B$ The level of fear 4
$A_1$ Consumption rate of predator 0.5
$A_2$ Intraspecific competition of predator 0.5
$K$ Carrying capacity of prey 2
$\eta$ Alternative prey density 0.25
$B_1$ Half saturation coefficient 0.1
$H_1$ Harvesting rate of prey 0.01
$H_2$ Harvesting rate of predator 0.02
(b)
Non-dimensional parameters
Parameter Value
$r$ 1
$\alpha$ 0.03
$\beta$ 0.48
$\eta_1$ 0.125
$b$ 0.025
$h_1$ 0.333
$h_2$ 0.667
Table 3.  Existence and local stability of equilibria of system (3)
Equilibria Sufficient condition for existence Local asymptotic stability
$ E_0 $ Always $ h_1>1 $ and $ h_2>r $
$ E_1 $ $ h_1<1 $ $ h_{1}<1 $ and $ h_{2}>r $
$ E_2 $ $ h_2<r $ $ h_{1}>h_{1}^* $ and $ h_{2}<r $
$ E^* $ $ h_1<\min\{1,h_{1}^*\} $ and $ h_2<r $ $ h_1<\min\{1,h_{1}^*\} $ and $ h_2<r $
Equilibria Sufficient condition for existence Local asymptotic stability
$ E_0 $ Always $ h_1>1 $ and $ h_2>r $
$ E_1 $ $ h_1<1 $ $ h_{1}<1 $ and $ h_{2}>r $
$ E_2 $ $ h_2<r $ $ h_{1}>h_{1}^* $ and $ h_{2}<r $
$ E^* $ $ h_1<\min\{1,h_{1}^*\} $ and $ h_2<r $ $ h_1<\min\{1,h_{1}^*\} $ and $ h_2<r $
Table 4.  Existence and local stability of equilibria of system (4)
Equilibria Sufficient condition for existence Local asymptotic stability
$ E_0 $ Always $ h_1>1 $ and $ h_2>r $
$ E_1 $ $ h_1<1 $ $ h_{1}<1 $ and $ h_{2}>r $
$ E_2 $ $ h_2<r $ $ h_{1}>h_{1}^{**} $ and $ h_{2}<r $
$ E^*_i $ $ h_1<\min\{1,h_{1}^{**}\} $ and $ h_2<r $ $ \mbox{Tr}(J^*_i)<0 $ and $ \mbox{Det}(J^*_i)>0 $
Equilibria Sufficient condition for existence Local asymptotic stability
$ E_0 $ Always $ h_1>1 $ and $ h_2>r $
$ E_1 $ $ h_1<1 $ $ h_{1}<1 $ and $ h_{2}>r $
$ E_2 $ $ h_2<r $ $ h_{1}>h_{1}^{**} $ and $ h_{2}<r $
$ E^*_i $ $ h_1<\min\{1,h_{1}^{**}\} $ and $ h_2<r $ $ \mbox{Tr}(J^*_i)<0 $ and $ \mbox{Det}(J^*_i)>0 $
Table 5.  Existence and local stability of equilibria of system (5)
Equilibria Sufficient condition for existence Local asymptotic stability
$ E_0 $ Always $ h_1>1 $ and $ h_2>r $
$ E_1 $ $ h_1<1 $ $ h_{1}<1 $ and $ h_{2}>r $
$ E_2 $ $ h_2<r $ $ h_{1}>h_1^{\#} $ and $ h_{2}<r $
$ E_* $ $ h_1<\min\{1,h_1^{\#}\} $ and $ h_2<r $ $ \mbox{Tr}(J_*)<0 $ and $ \mbox{Det}(J_*)>0 $
Equilibria Sufficient condition for existence Local asymptotic stability
$ E_0 $ Always $ h_1>1 $ and $ h_2>r $
$ E_1 $ $ h_1<1 $ $ h_{1}<1 $ and $ h_{2}>r $
$ E_2 $ $ h_2<r $ $ h_{1}>h_1^{\#} $ and $ h_{2}<r $
$ E_* $ $ h_1<\min\{1,h_1^{\#}\} $ and $ h_2<r $ $ \mbox{Tr}(J_*)<0 $ and $ \mbox{Det}(J_*)>0 $
Table 6.  Comparison of the critical threshold values for transcritical bifurcation (TB) and saddle-node bifurcation (SNB) of the three systems
Bifurcation parameter Linear Holling type Ⅱ Holling type Ⅲ
Threshold Bifurcation Threshold Bifurcation Threshold Bifurcation
$h_1$
($h_2 < r$)
$h_1^*=0.8971$ TB $h_1^{**}=0.1475$
$h_{1sn}^-=0.3685$
TB
SNB
$h_1^{\#}=0.79$ TB
$h_1$
($h_2>r$)
$h_1^*=1$ TB $h_1^{**}=1$ TB $h_1^{\#}=1$ TB
$h_2$
($h_1 < 1$)
$h_2^*=1$ TB $h_2^{**}=0.74$
$h_{2sn}=0.64$
TB
SNB
$h_2^{\#}=1$ TB
$\beta$
($h_1 < 1$ & $h_2 < r$)
$\beta^*=16.8$ TB $\beta^{**}=16$
$\beta_{sn}=18.51$
TB
SNB
$\beta^{\#}=1.5$ TB
$\eta_1$
($h_1 < 1$ & $h_2 < r$)
$\eta_1^*=0.825$ TB $\eta_1^{**}=0.2$
$\eta_{1sn}=0.441$
TB
SNB
$\eta_1^{\#}=0.3721$ TB
Bifurcation parameter Linear Holling type Ⅱ Holling type Ⅲ
Threshold Bifurcation Threshold Bifurcation Threshold Bifurcation
$h_1$
($h_2 < r$)
$h_1^*=0.8971$ TB $h_1^{**}=0.1475$
$h_{1sn}^-=0.3685$
TB
SNB
$h_1^{\#}=0.79$ TB
$h_1$
($h_2>r$)
$h_1^*=1$ TB $h_1^{**}=1$ TB $h_1^{\#}=1$ TB
$h_2$
($h_1 < 1$)
$h_2^*=1$ TB $h_2^{**}=0.74$
$h_{2sn}=0.64$
TB
SNB
$h_2^{\#}=1$ TB
$\beta$
($h_1 < 1$ & $h_2 < r$)
$\beta^*=16.8$ TB $\beta^{**}=16$
$\beta_{sn}=18.51$
TB
SNB
$\beta^{\#}=1.5$ TB
$\eta_1$
($h_1 < 1$ & $h_2 < r$)
$\eta_1^*=0.825$ TB $\eta_1^{**}=0.2$
$\eta_{1sn}=0.441$
TB
SNB
$\eta_1^{\#}=0.3721$ TB
Table 7.  Bifurcation parameters with different foraging types and corresponding basins of attraction at $ E^* $
Parameters Largest basin of recovery Smallest basin of recovery
$ h_1 $ & $ h_2 $ Linear Holling type Ⅱ
$ h_1 $ & $ \beta $ Linear Holling type Ⅲ
$ h_2 $ & $ \beta $ Holling type Ⅲ Holling type Ⅱ
$ h_1 $ & $ \eta_1 $ Linear Holling type Ⅱ
$ h_2 $ & $ \eta_1 $ Linear Holling type Ⅱ
Parameters Largest basin of recovery Smallest basin of recovery
$ h_1 $ & $ h_2 $ Linear Holling type Ⅱ
$ h_1 $ & $ \beta $ Linear Holling type Ⅲ
$ h_2 $ & $ \beta $ Holling type Ⅲ Holling type Ⅱ
$ h_1 $ & $ \eta_1 $ Linear Holling type Ⅱ
$ h_2 $ & $ \eta_1 $ Linear Holling type Ⅱ
[1]

Kie Van Ivanky Saputra, Lennaert van Veen, Gilles Reinout Willem Quispel. The saddle-node-transcritical bifurcation in a population model with constant rate harvesting. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 233-250. doi: 10.3934/dcdsb.2010.14.233

[2]

Rui Dilão, András Volford. Excitability in a model with a saddle-node homoclinic bifurcation. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 419-434. doi: 10.3934/dcdsb.2004.4.419

[3]

Ping Liu, Junping Shi, Yuwen Wang. A double saddle-node bifurcation theorem. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2923-2933. doi: 10.3934/cpaa.2013.12.2923

[4]

Flaviano Battelli. Saddle-node bifurcation of homoclinic orbits in singular systems. Discrete & Continuous Dynamical Systems, 2001, 7 (1) : 203-218. doi: 10.3934/dcds.2001.7.203

[5]

Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete & Continuous Dynamical Systems, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997

[6]

Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045

[7]

John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete & Continuous Dynamical Systems, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805

[8]

Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 973-993. doi: 10.3934/dcdss.2017051

[9]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[10]

Hooton Edward, Balanov Zalman, Krawcewicz Wieslaw, Rachinskii Dmitrii. Sliding Hopf bifurcation in interval systems. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 3545-3566. doi: 10.3934/dcds.2017152

[11]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[12]

Russell Johnson, Francesca Mantellini. A nonautonomous transcritical bifurcation problem with an application to quasi-periodic bubbles. Discrete & Continuous Dynamical Systems, 2003, 9 (1) : 209-224. doi: 10.3934/dcds.2003.9.209

[13]

Na Min, Mingxin Wang. Hopf bifurcation and steady-state bifurcation for a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete & Continuous Dynamical Systems, 2019, 39 (2) : 1071-1099. doi: 10.3934/dcds.2019045

[14]

Zuolin Shen, Junjie Wei. Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect. Mathematical Biosciences & Engineering, 2018, 15 (3) : 693-715. doi: 10.3934/mbe.2018031

[15]

Fernando Antoneli, Ana Paula S. Dias, Rui Paiva. Coupled cell networks: Hopf bifurcation and interior symmetry. Conference Publications, 2011, 2011 (Special) : 71-78. doi: 10.3934/proc.2011.2011.71

[16]

R. Ouifki, M. L. Hbid, O. Arino. Attractiveness and Hopf bifurcation for retarded differential equations. Communications on Pure & Applied Analysis, 2003, 2 (2) : 147-158. doi: 10.3934/cpaa.2003.2.147

[17]

Fatihcan M. Atay. Delayed feedback control near Hopf bifurcation. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 197-205. doi: 10.3934/dcdss.2008.1.197

[18]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[19]

Begoña Alarcón, Víctor Guíñez, Carlos Gutierrez. Hopf bifurcation at infinity for planar vector fields. Discrete & Continuous Dynamical Systems, 2007, 17 (2) : 247-258. doi: 10.3934/dcds.2007.17.247

[20]

Eric Benoît. Bifurcation delay - the case of the sequence: Stable focus - unstable focus - unstable node. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 911-929. doi: 10.3934/dcdss.2009.2.911

2020 Impact Factor: 1.327

Article outline

Figures and Tables

[Back to Top]