• Previous Article
    BMO type space associated with Neumann operator and application to a class of parabolic equations
  • DCDS-B Home
  • This Issue
  • Next Article
    Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system
doi: 10.3934/dcdsb.2021216
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Blow-up prevention by quadratic degradation in a higher-dimensional chemotaxis-growth model with indirect attractant production

School of Data Science and Artificial Intelligence, Dongbei University of Finance and Economics, Dalian, 116025, China

* Corresponding author: Jianing Xie

Received  March 2021 Revised  July 2021 Early access September 2021

Fund Project: The author is supported by National Science Foundation of China grant (No. 11572081), the Program Funded by Liaoning Province Education Administration (No. LN2021M37) and Dongbei University of Finance and Economics (No. DUFE2020Y20)

This paper deals with a boundary-value problem in three-dimensional smoothly bounded domains for a coupled chemotaxis-growth system generalizing the prototype
$\begin{align} \left\{\begin{array}{ll} u_t = \Delta u-\nabla\cdot(u\nabla v)+\mu u(1-u),\quad x\in \Omega, t>0,\\ { }{ v_t = \Delta v- v +w},\quad x\in \Omega, t>0,\\ { }{\tau w_t+\delta w = u},\quad x\in \Omega, t>0\\ \end{array}\right. \end{align} (*)$
in a smoothly bounded domain
$ \Omega\subset\mathbb{R}^N(N\geq1) $
under zero-flux boundary conditions, which describe the spread and aggregative behavior of the Mountain Pine Beetle in forest habitat, where the parameters
$ \mu $
as well as
$ \delta $
and
$ \tau $
are positive. Based on an new energy-type argument combined with maximal Sobolev regularity theory, it is proved that global classical solutions exist whenever
$ \mu>\left\{ \begin{array}{ll} {0, \; \; \; {\rm{if}}\; \; N\leq4},\\ {\frac{(N-4)_{+}}{N-2}\max\{1,\lambda_{0}\},\; \; \; {\rm{if}}\; \; N\geq5}\\ \end{array} \right. $
and the initial data
$ (u_0,v_0,w_0) $
are sufficiently regular. Here
$ \lambda_0 $
is a positive constant which is corresponding to the maximal Sobolev regularity. This extends some recent results by several authors.
Citation: Jianing Xie. Blow-up prevention by quadratic degradation in a higher-dimensional chemotaxis-growth model with indirect attractant production. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021216
References:
[1]

N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations, Comm. Partial Diff. Eqns., 4 (1979), 827-868.  doi: 10.1080/03605307908820113.  Google Scholar

[2]

N. BellomoA. BelloquidY. Tao and M. Winkler, Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.  doi: 10.1142/S021820251550044X.  Google Scholar

[3]

V. Calvez and J. A. Carrillo, Volume effects in the Keller–Segel model: Energy estimates preventing blow-up, J. Math. Pures Appl., 86 (2006), 155-175.  doi: 10.1016/j.matpur.2006.04.002.  Google Scholar

[4]

T. Hillen and K. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[5]

T. Hillen and K. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding, Adv. Appl. Math., 26 (2001), 281-301.  doi: 10.1006/aama.2001.0721.  Google Scholar

[6]

B. Hu and Y. Tao, To the exclusion of blow-up in a three-dimensional chemotaxis-growth model with indirect attractant production, Math. Models Methods Appl. Sci., 26 (2016), 2111-2128.  doi: 10.1142/S0218202516400091.  Google Scholar

[7]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Diff. Eqns., 215 (2005), 52-107.  doi: 10.1016/j.jde.2004.10.022.  Google Scholar

[8]

Y. Ke and J. Zheng, An optimal result for global existence in a three-dimensional Keller–Segel–Navier–Stokes system involving tensor-valued sensitivity with saturation, Calc. Var. Partial Diff. Eqns., 58 (2019), 58-109.  doi: 10.1007/s00526-019-1568-2.  Google Scholar

[9]

E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[10]

E. Lankeit and J. Lankeit, Classical solutions to a logistic chemotaxis model with singular sensitivity and signal absorption, Nonlinear Anal. RWA., 46 (2019), 421-445.  doi: 10.1016/j.nonrwa.2018.09.012.  Google Scholar

[11]

H. Li and Y. Tao, Boundedness in a chemotaxis system with indirect signal production and generalized logistic source, Appl. Math. Lett., 77 (2018), 108-113.  doi: 10.1016/j.aml.2017.10.006.  Google Scholar

[12]

H. Matthias and P. Jan, Heat kernels and maximal $L^p$-$L^q$ estimate for parabolic evolution equations, Comm. Partial Diff. Eqns., 22 (1997), 1647-1669.  doi: 10.1080/03605309708821314.  Google Scholar

[13]

T. NagaiT. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvac., 40 (1997), 411-433.   Google Scholar

[14]

S. StrohmR. C. Tyson and J. A. Powell, Pattern formation in a model for mountain pine beetle dispersal: Linking model predictions to data, Bull. Math. Biol., 75 (2013), 1778-1797.  doi: 10.1007/s11538-013-9868-8.  Google Scholar

[15]

Q. TangQ. Xin and C. Mu, Boundedness of the higher-dimensional quasilinear chemotaxis system with generalized logistic source, Acta Math Sci., 40 (2020), 713-722.  doi: 10.1007/s10473-020-0309-0.  Google Scholar

[16]

Y. Tao and M. Winkler, A chemotaxis–haptotaxis model: The roles of nonlinear diffusion and logistic source, SIAM J. Math. Anal., 43 (2011), 685-704.  doi: 10.1137/100802943.  Google Scholar

[17]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with subcritical sensitivity, J. Diff. Eqns., 252 (2012), 692-715.  doi: 10.1016/j.jde.2011.08.019.  Google Scholar

[18]

Y. Tao and M. Winkler, Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production, J. Eur. Math. Soc., 19 (2017), 3641-3678.  doi: 10.4171/JEMS/749.  Google Scholar

[19]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Partial Diff. Eqns., 32 (2007), 849-877.  doi: 10.1080/03605300701319003.  Google Scholar

[20]

J. I. Tello and D. Wrzosek, Predator-prey model with diffusion and indirect prey-taxis, Math. Models Methods Appl. Sci., 26 (2016), 2129-2162.  doi: 10.1142/S0218202516400108.  Google Scholar

[21]

L. WangY. Li and C. Mu, Boundedness in a parabolic–parabolic quasilinear chemotaxis system with logistic source, Discrete Contin. Dyn. Syst. Ser. A., 34 (2014), 789-802.  doi: 10.3934/dcds.2014.34.789.  Google Scholar

[22]

L. WangC. Mu and P. Zheng, On a quasilinear parabolic–elliptic chemotaxis system with logistic source, J. Diff. Eqns., 256 (2014), 1847-1872.  doi: 10.1016/j.jde.2013.12.007.  Google Scholar

[23]

Y. Wang, Boundedness in the higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion, J. Diff. Eqns., 260 (2016), 1975-1989.  doi: 10.1016/j.jde.2015.09.051.  Google Scholar

[24]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model, J. Diff. Eqns., 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[25]

M. Winkler, Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source, Comm. Partial Diff. Eqns., 35 (2010), 1516-1537.  doi: 10.1080/03605300903473426.  Google Scholar

[26]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system, J. Math. Pures Appl., 100 (2013), 748-767.  doi: 10.1016/j.matpur.2013.01.020.  Google Scholar

[27]

M. Winkler, Global asymptotic stability of constant equilibriain a fully parabolic chemotaxis system with strong logistic dampening, J. Diff. Eqns., 257 (2014), 1056-1077.  doi: 10.1016/j.jde.2014.04.023.  Google Scholar

[28]

J. Zheng, Boundedness of solutions to a quasilinear parabolic–elliptic Keller–Segel system with logistic source, J. Diff. Eqns., 259 (2015), 120-140.  doi: 10.1016/j.jde.2015.02.003.  Google Scholar

[29]

J. Zheng, An optimal result for global existence and boundedness in a three-dimensional Keller-Segel-Stokes system with nonlinear diffusion, J. Diff. Eqns., 267 (2019), 2385-2415.  doi: 10.1016/j.jde.2019.03.013.  Google Scholar

[30]

J. Zheng, Mathematical research for models which is related to chemotaxis system, current trends in mathematical analysis and its interdisciplinary applications, Birkhäuser, Cham, (2019), 351–444.  Google Scholar

[31]

J. Zheng, A note on boundedness of solutions to a higher-dimensional quasi–linear chemotaxis system with logistic source, ZAMM Z. Angew. Math. Mech., 97 (2017), 414-421.  doi: 10.1002/zamm.201600166.  Google Scholar

[32]

J. ZhengY. LiG. Bao and X. Zou, A new result for global existence and boundedness of solutions to a parabolic–parabolic Keller–Segel system with logistic source, J. Math. Anal. Appl., 462 (2018), 1-25.  doi: 10.1016/j.jmaa.2018.01.064.  Google Scholar

show all references

References:
[1]

N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations, Comm. Partial Diff. Eqns., 4 (1979), 827-868.  doi: 10.1080/03605307908820113.  Google Scholar

[2]

N. BellomoA. BelloquidY. Tao and M. Winkler, Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.  doi: 10.1142/S021820251550044X.  Google Scholar

[3]

V. Calvez and J. A. Carrillo, Volume effects in the Keller–Segel model: Energy estimates preventing blow-up, J. Math. Pures Appl., 86 (2006), 155-175.  doi: 10.1016/j.matpur.2006.04.002.  Google Scholar

[4]

T. Hillen and K. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[5]

T. Hillen and K. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding, Adv. Appl. Math., 26 (2001), 281-301.  doi: 10.1006/aama.2001.0721.  Google Scholar

[6]

B. Hu and Y. Tao, To the exclusion of blow-up in a three-dimensional chemotaxis-growth model with indirect attractant production, Math. Models Methods Appl. Sci., 26 (2016), 2111-2128.  doi: 10.1142/S0218202516400091.  Google Scholar

[7]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Diff. Eqns., 215 (2005), 52-107.  doi: 10.1016/j.jde.2004.10.022.  Google Scholar

[8]

Y. Ke and J. Zheng, An optimal result for global existence in a three-dimensional Keller–Segel–Navier–Stokes system involving tensor-valued sensitivity with saturation, Calc. Var. Partial Diff. Eqns., 58 (2019), 58-109.  doi: 10.1007/s00526-019-1568-2.  Google Scholar

[9]

E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[10]

E. Lankeit and J. Lankeit, Classical solutions to a logistic chemotaxis model with singular sensitivity and signal absorption, Nonlinear Anal. RWA., 46 (2019), 421-445.  doi: 10.1016/j.nonrwa.2018.09.012.  Google Scholar

[11]

H. Li and Y. Tao, Boundedness in a chemotaxis system with indirect signal production and generalized logistic source, Appl. Math. Lett., 77 (2018), 108-113.  doi: 10.1016/j.aml.2017.10.006.  Google Scholar

[12]

H. Matthias and P. Jan, Heat kernels and maximal $L^p$-$L^q$ estimate for parabolic evolution equations, Comm. Partial Diff. Eqns., 22 (1997), 1647-1669.  doi: 10.1080/03605309708821314.  Google Scholar

[13]

T. NagaiT. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvac., 40 (1997), 411-433.   Google Scholar

[14]

S. StrohmR. C. Tyson and J. A. Powell, Pattern formation in a model for mountain pine beetle dispersal: Linking model predictions to data, Bull. Math. Biol., 75 (2013), 1778-1797.  doi: 10.1007/s11538-013-9868-8.  Google Scholar

[15]

Q. TangQ. Xin and C. Mu, Boundedness of the higher-dimensional quasilinear chemotaxis system with generalized logistic source, Acta Math Sci., 40 (2020), 713-722.  doi: 10.1007/s10473-020-0309-0.  Google Scholar

[16]

Y. Tao and M. Winkler, A chemotaxis–haptotaxis model: The roles of nonlinear diffusion and logistic source, SIAM J. Math. Anal., 43 (2011), 685-704.  doi: 10.1137/100802943.  Google Scholar

[17]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with subcritical sensitivity, J. Diff. Eqns., 252 (2012), 692-715.  doi: 10.1016/j.jde.2011.08.019.  Google Scholar

[18]

Y. Tao and M. Winkler, Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production, J. Eur. Math. Soc., 19 (2017), 3641-3678.  doi: 10.4171/JEMS/749.  Google Scholar

[19]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Partial Diff. Eqns., 32 (2007), 849-877.  doi: 10.1080/03605300701319003.  Google Scholar

[20]

J. I. Tello and D. Wrzosek, Predator-prey model with diffusion and indirect prey-taxis, Math. Models Methods Appl. Sci., 26 (2016), 2129-2162.  doi: 10.1142/S0218202516400108.  Google Scholar

[21]

L. WangY. Li and C. Mu, Boundedness in a parabolic–parabolic quasilinear chemotaxis system with logistic source, Discrete Contin. Dyn. Syst. Ser. A., 34 (2014), 789-802.  doi: 10.3934/dcds.2014.34.789.  Google Scholar

[22]

L. WangC. Mu and P. Zheng, On a quasilinear parabolic–elliptic chemotaxis system with logistic source, J. Diff. Eqns., 256 (2014), 1847-1872.  doi: 10.1016/j.jde.2013.12.007.  Google Scholar

[23]

Y. Wang, Boundedness in the higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion, J. Diff. Eqns., 260 (2016), 1975-1989.  doi: 10.1016/j.jde.2015.09.051.  Google Scholar

[24]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model, J. Diff. Eqns., 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[25]

M. Winkler, Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source, Comm. Partial Diff. Eqns., 35 (2010), 1516-1537.  doi: 10.1080/03605300903473426.  Google Scholar

[26]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system, J. Math. Pures Appl., 100 (2013), 748-767.  doi: 10.1016/j.matpur.2013.01.020.  Google Scholar

[27]

M. Winkler, Global asymptotic stability of constant equilibriain a fully parabolic chemotaxis system with strong logistic dampening, J. Diff. Eqns., 257 (2014), 1056-1077.  doi: 10.1016/j.jde.2014.04.023.  Google Scholar

[28]

J. Zheng, Boundedness of solutions to a quasilinear parabolic–elliptic Keller–Segel system with logistic source, J. Diff. Eqns., 259 (2015), 120-140.  doi: 10.1016/j.jde.2015.02.003.  Google Scholar

[29]

J. Zheng, An optimal result for global existence and boundedness in a three-dimensional Keller-Segel-Stokes system with nonlinear diffusion, J. Diff. Eqns., 267 (2019), 2385-2415.  doi: 10.1016/j.jde.2019.03.013.  Google Scholar

[30]

J. Zheng, Mathematical research for models which is related to chemotaxis system, current trends in mathematical analysis and its interdisciplinary applications, Birkhäuser, Cham, (2019), 351–444.  Google Scholar

[31]

J. Zheng, A note on boundedness of solutions to a higher-dimensional quasi–linear chemotaxis system with logistic source, ZAMM Z. Angew. Math. Mech., 97 (2017), 414-421.  doi: 10.1002/zamm.201600166.  Google Scholar

[32]

J. ZhengY. LiG. Bao and X. Zou, A new result for global existence and boundedness of solutions to a parabolic–parabolic Keller–Segel system with logistic source, J. Math. Anal. Appl., 462 (2018), 1-25.  doi: 10.1016/j.jmaa.2018.01.064.  Google Scholar

[1]

Mengyao Ding, Wei Wang. Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4665-4684. doi: 10.3934/dcdsb.2018328

[2]

Philippe Laurençot. Global bounded and unbounded solutions to a chemotaxis system with indirect signal production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6419-6444. doi: 10.3934/dcdsb.2019145

[3]

Ling Liu, Jiashan Zheng. Global existence and boundedness of solution of a parabolic-parabolic-ODE chemotaxis-haptotaxis model with (generalized) logistic source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3357-3377. doi: 10.3934/dcdsb.2018324

[4]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[5]

Guoqiang Ren, Heping Ma. Global existence in a chemotaxis system with singular sensitivity and signal production. Discrete & Continuous Dynamical Systems - B, 2022, 27 (1) : 343-360. doi: 10.3934/dcdsb.2021045

[6]

Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315

[7]

Hong Yi, Chunlai Mu, Shuyan Qiu, Lu Xu. Global boundedness of radial solutions to a parabolic-elliptic chemotaxis system with flux limitation and nonlinear signal production. Communications on Pure & Applied Analysis, 2021, 20 (11) : 3825-3849. doi: 10.3934/cpaa.2021133

[8]

Abelardo Duarte-Rodríguez, Lucas C. F. Ferreira, Élder J. Villamizar-Roa. Global existence for an attraction-repulsion chemotaxis fluid model with logistic source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 423-447. doi: 10.3934/dcdsb.2018180

[9]

Guoqiang Ren, Bin Liu. Global boundedness of solutions to a chemotaxis-fluid system with singular sensitivity and logistic source. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3843-3883. doi: 10.3934/cpaa.2020170

[10]

Tomomi Yokota, Noriaki Yoshino. Existence of solutions to chemotaxis dynamics with logistic source. Conference Publications, 2015, 2015 (special) : 1125-1133. doi: 10.3934/proc.2015.1125

[11]

Liangchen Wang, Yuhuan Li, Chunlai Mu. Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 789-802. doi: 10.3934/dcds.2014.34.789

[12]

Chun Huang. Global boundedness for a chemotaxis-competition system with signal dependent sensitivity and loop. Electronic Research Archive, 2021, 29 (5) : 3261-3279. doi: 10.3934/era.2021037

[13]

Youshan Tao, Michael Winkler. A chemotaxis-haptotaxis system with haptoattractant remodeling: Boundedness enforced by mild saturation of signal production. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2047-2067. doi: 10.3934/cpaa.2019092

[14]

Xu Pan, Liangchen Wang. Boundedness and asymptotic stability in a quasilinear two-species chemotaxis system with nonlinear signal production. Communications on Pure & Applied Analysis, 2021, 20 (6) : 2211-2236. doi: 10.3934/cpaa.2021064

[15]

Xiangdong Zhao. Global boundedness of classical solutions to a logistic chemotaxis system with singular sensitivity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 5095-5100. doi: 10.3934/dcdsb.2020334

[16]

Ke Lin, Chunlai Mu. Global dynamics in a fully parabolic chemotaxis system with logistic source. Discrete & Continuous Dynamical Systems, 2016, 36 (9) : 5025-5046. doi: 10.3934/dcds.2016018

[17]

Pan Zheng, Chunlai Mu, Xuegang Hu. Boundedness and blow-up for a chemotaxis system with generalized volume-filling effect and logistic source. Discrete & Continuous Dynamical Systems, 2015, 35 (5) : 2299-2323. doi: 10.3934/dcds.2015.35.2299

[18]

Shijie Shi, Zhengrong Liu, Hai-Yang Jin. Boundedness and large time behavior of an attraction-repulsion chemotaxis model with logistic source. Kinetic & Related Models, 2017, 10 (3) : 855-878. doi: 10.3934/krm.2017034

[19]

Lu Xu, Chunlai Mu, Qiao Xin. Global boundedness of solutions to the two-dimensional forager-exploiter model with logistic source. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3031-3043. doi: 10.3934/dcds.2020396

[20]

Johannes Lankeit, Yulan Wang. Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption. Discrete & Continuous Dynamical Systems, 2017, 37 (12) : 6099-6121. doi: 10.3934/dcds.2017262

2020 Impact Factor: 1.327

Article outline

[Back to Top]