# American Institute of Mathematical Sciences

doi: 10.3934/dcdsb.2021240
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

## Large time behavior in a predator-prey system with pursuit-evasion interaction

 School of Mathematics Renmin University of China Beijing, 100872, China

* Corresponding author: Yuanyuan Ke

Received  June 2021 Revised  August 2021 Early access October 2021

This work considers a pursuit-evasion model
 $$$\left\{ \begin{split} &u_t = \Delta u-\chi\nabla\cdot(u\nabla w)+u(\mu-u+av),\\ &v_t = \Delta v+\xi\nabla\cdot(v\nabla z)+v(\lambda-v-bu),\\ &w_t = \Delta w-w+v,\\ &z_t = \Delta z-z+u\\ \end{split} \right. \ \ \ \ \ (1)$$$
with positive parameters
 $\chi$
,
 $\xi$
,
 $\mu$
,
 $\lambda$
,
 $a$
and
 $b$
in a bounded domain
 $\Omega\subset\mathbb{R}^N$
(
 $N$
is the dimension of the space) with smooth boundary. We prove that if
 $a<2$
and
 $\frac{N(2-a)}{2(C_{\frac{N}{2}+1})^{\frac{1}{\frac{N}{2}+1}}(N-2)_+}>\max\{\chi,\xi\}$
, (1) possesses a global bounded classical solution with a positive constant
 $C_{\frac{N}{2}+1}$
corresponding to the maximal Sobolev regularity. Moreover, it is shown that if
 $b\mu<\lambda$
, the solution (
 $u,v,w,z$
) converges to a spatially homogeneous coexistence state with respect to the norm in
 $L^\infty(\Omega)$
in the large time limit under some exact smallness conditions on
 $\chi$
and
 $\xi$
. If
 $b\mu>\lambda$
, the solution converges to (
 $\mu,0,0,\mu$
) with respect to the norm in
 $L^\infty(\Omega)$
as
 $t\rightarrow \infty$
under some smallness assumption on
 $\chi$
with arbitrary
 $\xi$
.
Citation: Dayong Qi, Yuanyuan Ke. Large time behavior in a predator-prey system with pursuit-evasion interaction. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2021240
##### References:

show all references

##### References:
 [1] Genglin Li, Youshan Tao, Michael Winkler. Large time behavior in a predator-prey system with indirect pursuit-evasion interaction. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4383-4396. doi: 10.3934/dcdsb.2020102 [2] Mihaela Negreanu. Global existence and asymptotic behavior of solutions to a chemotaxis system with chemicals and prey-predator terms. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3335-3356. doi: 10.3934/dcdsb.2020064 [3] Weike Wang, Yucheng Wang. Global existence and large time behavior for the chemotaxis–shallow water system in a bounded domain. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6379-6409. doi: 10.3934/dcds.2020284 [4] Guoqiang Ren, Bin Liu. Global existence and convergence to steady states for a predator-prey model with both predator- and prey-taxis. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021136 [5] Dongfen Bian, Boling Guo. Global existence and large time behavior of solutions to the electric-magnetohydrodynamic equations. Kinetic & Related Models, 2013, 6 (3) : 481-503. doi: 10.3934/krm.2013.6.481 [6] Nguyen Huu Du, Nguyen Thanh Dieu, Tran Dinh Tuong. Dynamic behavior of a stochastic predator-prey system under regime switching. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3483-3498. doi: 10.3934/dcdsb.2017176 [7] Canan Çelik. Dynamical behavior of a ratio dependent predator-prey system with distributed delay. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 719-738. doi: 10.3934/dcdsb.2011.16.719 [8] Nguyen Huu Du, Nguyen Hai Dang. Asymptotic behavior of Kolmogorov systems with predator-prey type in random environment. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2693-2712. doi: 10.3934/cpaa.2014.13.2693 [9] Wenshu Zhou, Hongxing Zhao, Xiaodan Wei, Guokai Xu. Existence of positive steady states for a predator-prey model with diffusion. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2189-2201. doi: 10.3934/cpaa.2013.12.2189 [10] Zhong Li, Maoan Han, Fengde Chen. Global stability of a predator-prey system with stage structure and mutual interference. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 173-187. doi: 10.3934/dcdsb.2014.19.173 [11] Yinshu Wu, Wenzhang Huang. Global stability of the predator-prey model with a sigmoid functional response. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1159-1167. doi: 10.3934/dcdsb.2019214 [12] Xiaoli Liu, Dongmei Xiao. Bifurcations in a discrete time Lotka-Volterra predator-prey system. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 559-572. doi: 10.3934/dcdsb.2006.6.559 [13] Xinjian Wang, Guo Lin. Asymptotic spreading for a time-periodic predator-prey system. Communications on Pure & Applied Analysis, 2019, 18 (6) : 2983-2999. doi: 10.3934/cpaa.2019133 [14] Ovide Arino, Manuel Delgado, Mónica Molina-Becerra. Asymptotic behavior of disease-free equilibriums of an age-structured predator-prey model with disease in the prey. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 501-515. doi: 10.3934/dcdsb.2004.4.501 [15] Inkyung Ahn, Wonlyul Ko, Kimun Ryu. Asymptotic behavior of a ratio-dependent predator-prey system with disease in the prey. Conference Publications, 2013, 2013 (special) : 11-19. doi: 10.3934/proc.2013.2013.11 [16] Yu Ma, Chunlai Mu, Shuyan Qiu. Boundedness and asymptotic stability in a two-species predator-prey chemotaxis model. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021218 [17] Dan Li. Global stability in a multi-dimensional predator-prey system with prey-taxis. Discrete & Continuous Dynamical Systems, 2021, 41 (4) : 1681-1705. doi: 10.3934/dcds.2020337 [18] Chao Deng, Tong Li. Global existence and large time behavior of a 2D Keller-Segel system in logarithmic Lebesgue spaces. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 183-195. doi: 10.3934/dcdsb.2018093 [19] Peter A. Braza. Predator-Prey Dynamics with Disease in the Prey. Mathematical Biosciences & Engineering, 2005, 2 (4) : 703-717. doi: 10.3934/mbe.2005.2.703 [20] Jie Zhao. Large time behavior of solution to quasilinear chemotaxis system with logistic source. Discrete & Continuous Dynamical Systems, 2020, 40 (3) : 1737-1755. doi: 10.3934/dcds.2020091

2020 Impact Factor: 1.327